POLICY DESIGN, ECO-INNOVATION AND INDUSTRIAL DYNAMICS IN AN AGENT-BASED MODEL: AN ILLUSTRATION WITH THE REACH REGULATION

Documents de travail GREDEG
GREDEG Working Papers Series

NABILA ARFAOUI
ERIC BROUILLAT
MAİDER SAINT-JEAN

GREDEG WP No. 2013-22
http://www.gredeg.cnrs.fr/working-papers.html

The views expressed in the GREDEG Working Paper Series are those of the author(s) and do not necessarily reflect those of the institution. The Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate. Copyright belongs to the author(s).
Policy design, eco-innovation and industrial dynamics in an agent-based model: an illustration with the REACH regulation

N. Arfaoui¹, E. Brouillat² and M. Saint Jean²

¹ GREDEG, University of Nice Sophia-Antipolis, and PACA regional
² GREThA, University of Bordeaux

Abstract. This paper proposes an agent-based model to study the impact of European regulation REACH on industrial dynamics. This new regulation adopted in 2007 establishes a new philosophy in how to design environmental protection and health. For this reason, REACH appears as a privileged object of study to analyze the impact of regulation on innovation strategies of firms and the structure of market. Our model focuses on the interactions between clients and suppliers in order to take into account interdependencies in the heart of vertical relationships that are upset by the new principles introduced by REACH. The main contribution of this paper is to show, through an agent-based model, how different combinations of flexible and stringent instruments designed on REACH regulation (Extended Producer Responsibility, authorization process and restrictions) create the incentives and the constraints to shape market selection and innovation.

1 Introduction

In 2006, after a long ‘legislative battle’, the European Union (EU) adopted the REACH Regulation (Registration, Evaluation and Authorization of Chemicals) one of the most ambitious stringent regulation. This regulation introduces a new legislative philosophy in how to handle chemicals.

Firstly, REACH adopts the "principle of reversal of the burden of proof" from authorities to industry. This principle postulates that manufacturers and importers of chemicals must register each substance used in a quantity higher than one tone per year, and assess the health and environmental risks associated; otherwise they will be automatically excluded from the market ("No data, no market") Beal et al (2011).

Secondly, REACH extends responsibility also to users, since they are now responsible for the compliance of their production factors to the requirements of the new regulation. The downstream user is closely associated with regulatory compliance, by actively supporting the efforts of
producers of substances. REACH does not apply only to the chemical industry but concerns all the industries.

Lastly, a revolutionary aspect of chemicals regulation under REACH lies in **a process of authorization and restriction to the most dangerous substances**. Public authorization is required for the production and use of chemicals considered to be especially worrisome: so-called **substances of very high concern (SVHC)** "with the aim of substituting them". SVHC are to be gradually identified in the 'Candidate list' and eventually included in Annex XIV of the REACH Regulation. Once included in that Annex, they cannot be placed on the market or used after a date to be set (the so-called "sunset date") unless the company is granted an **authorization**. All request of authorization must be accompanied by a safety report and an analysis of alternatives. Thus, with the REACH Regulation, the precautionary principle is complemented by a **substitution principle**, whose goal is "to ensure a high level of protection of human health and the environment while improving competitiveness and innovation".

From the start, REACH has been designed to balance environmental objectives with competitiveness aims, and has the scope to induce the development and adoption of eco-innovation as a side-effect of the regulation itself. In the economic literature, many authors have emphasized a positive correlation between innovation and environmental regulation (Porter and van der Linde, 1995; Rennings, 2000; Jaffe and al., 2003). However, eco-innovations cannot be considered to be a systematic response to regulation. **Policy design** turns to be essential in inducing the development of eco-innovations (Ashford and al., 1985; Hahn, 1989; Johnstone, 2007; Jänicke, 2008). In this respect, a number of criteria such as stringency, flexibility, timing and credibility are important factors to consider. REACH seems to fit perfectly in this context and appears as a privileged object of study to analyze how policy design can stimulate or allow eco-innovation.

This paper tries to model the key principles and mechanisms on which REACH relies on in an agent-based model. We try to show how different combinations of flexible and stringent instruments designed on REACH regulation (such as derived from the Extended Producer Responsibility principle and from the approval process and restrictions) create the incentives and the constraints to shape market selection and innovation. In particular, the model is intended to assess in which extent increased obligations on SVHC

1 Eco-innovation (also called environmental innovation) can be defined as "the production, assimilation or exploitation of a product, production process, service or management or business methods that is novel to the organization (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives" (MEI Report, 2007).
through authorization provisions may lead to increased moves towards the substitution of those substances through the supply chain.

The paper is organized as follows. Section 2 draws on the literature on eco-innovation to underline the importance of policy design in inducing the development of eco-innovation. In this perspective, we bring into light the main mechanisms of the REACH regulation that can stimulate innovation and substitution of chemical substances. Section 3 presents the model following the ODD (Overview, Design concepts, Details) protocol (Grimm and al. 2006, 2010). Such a protocol provides a standard procedure for describing Agent-Based Models (ABMs) in order to make them easier to analyze, understand and communicate. Section 4 presents the baseline simulations and examines the impact of regulation upon the market dynamics by considering various configurations in the policy design, especially through the flexibility and the stringency variables. Section 5 concludes.

2 Environmental regulation and innovation

2.1 Literature reviews

Theoretical and empirical analyses on the relationship between environmental regulation and innovation agree that eco-innovations are essentially “policy-driven” (Jänicke, 2008). In its report, OECD (2007, 27) stresses “the dominant role” of the policy framework: “perceived policy stringency is the single most important factor driving environmental investment, technological innovation and reported performance”. We know from Porter and van der Linde (1995) that « properly designed environmental standards can trigger innovation that may partially or more than offset the costs of complying with them » in some instances (p.98). Only well-designed regulations lead to innovation. In particular flexible regulatory policies give firms greater incentives to innovate and thus are better than prescriptive forms of regulation. In many instances, these innovations are likely to more than offset the cost of regulation.

Rennings (2000) shows that, to the standard determinants of innovation, i.e. demand pull and technology push determinants, it has to be added a third determinant, called “regulatory push-pull effect”. Even if the traditional determinants play an important role, eco-innovations are driven by a double regulatory effect. Unlike traditional innovation eco-innovation is characterized by a double externality in both the phases of innovation and diffusion. The lack of incentive and ownership of innovations identified by Arrow (1962) is thus reinforced by the double externality problem. Therefore,
the existence of this property legitimates public intervention and regulation is a key determinant of eco-innovation2.

\textbf{Policy design} turns to be essential in inducing the development of eco-innovations (Jänicke, 2008). According to Ashford and al. (1985) and Hahn (1989), regulators must be careful to the severity, the flexibility and the timing of the regulation. Jänicke (2008) argue that the policy design should in particular be based on \textbf{ambitious and reliable targets}; and provide a \textbf{flexible policy mix} supporting the innovation process from invention to diffusion.

In the way REACH has been designed, the European Commission was very attentive to these criteria. A combination of hard and soft law has been preferred such that REACH relies more on open-ended standards (Fuchs, 2011) that combine different criteria:

- **Stringent**: the consequences of an incorrect application of the REACH Regulation are serious and immediate as they result in exclusion from market "No data, no market". Stringent standards should result in deep changes in firms’ innovation strategies;

- **Reachable**: Fuchs (2011) describes REACH as a pragmatic regulation which is both ambitious and realistic in his goals in order to represent real incentive to undertake innovation. Pragmatism lies also in other provisions such as the multiple deadlines for phase-in substances, the collective setting of priorities under the authorization and restriction processes, the various exemptions incorporated in the regulation, or the limited risk assessment requirements for substances placed on the market in proportions of less than 10 tones.

- **Flexible**: it is present through open-ended standards, flexible and revisable guidelines, and other forms of “soft law”. It was important that the system remain flexible in order to ensure its workability (Fuchs, 2011). Moreover, REACH promotes a mode of governance based on the idea of "self-responsibility". This approach involves giving more responsibilities to companies and more flexibility on how to achieve the goals (Fuchs, 2011). In total, these mechanisms can adapt to diversity, tolerate alternative approaches to problem-solving, and make it easier to revise strategies and standards in light of evolving knowledge (Scott and Trubek, 2002).

\subsection*{2.2 The effect of REACH on innovation}

REACH has been designed to enhance innovation. For Nordbeck and Faust (2003), innovation is "the most important advantage of the REACH regulation". It is possible to modify the technological trajectory in the

2 In several empirical studies, regulation has also been identified as an important determinant of eco-innovation: see for example Lanjouw and Mody(1996), Jaffe and Palmer (1997), Popp (2005). For an overview, see the EEA technical report (2011).
chemical industry and increase innovation towards sustainable development. According to a recent report (Eurostat, 2009) on the impact of REACH on innovation\(^3\), a number of innovation-friendly mechanisms in the chemical industry are present in REACH. In our model, we mainly focus on two crucial mechanisms that can promote innovation in the chemical industry: the authorization process and the extended responsibility principle.

The authorization procedure for substances of very high concern is connected to the principle of substitution. The purpose of the authorization is to ensure that the risks from substances of very high concern are properly controlled and that these substances are progressively replaced by other substances or technologies where these are economically and technically viable. The authorization procedure is based on several steps: identification of substances; request for authorization before the sunset date; granting or refusing authorization; review of authorization.

Substances eligible for authorization are identified by a Member State or the European Commission and are included in a list of substances of concern “substances of very high concern” (SVHC) listed in Annex XIV. Once included in that Annex, every firm willing to use such a substance must request for authorization before the “sunset date”. Thus, SVHC cannot be placed on the market or used after the “sunset date” unless the company is granted an authorization.

The granting or refusal of authorization is primarily based on the existence of economically and technically viable alternatives. So, in the event that there are economically viable alternatives, no companies will longer be allowed to use substances after the sunset date. However if there are no technically and economically viable alternatives, authorizations are granted only if firms prove that they carry out serious analyses of alternatives. In fact, under Article 5 of the regulation, all request of authorization must be accompanied by a safety report and an analysis of alternatives with information about activities of R&D. In that case, authorizations are granted a case by case until a specific date by which the holder of the authorization will have to resubmit an application. Review dates are driven by the information provided by the applicant, in particular the substitution plan and the analysis of alternatives. To renew an authorization, a revised report must be sent to ECHA before the expiry date of the time-limited review period defined in the authorization decision. Meanwhile, the authorization may be reviewed or suspended by the Commission at any time, if information regarding possible replacement substances becomes available. So firms are encouraged to maintain technology watch on alternatives.

\(^3\) An assessment of the impact of Reach on innovation can be found in Berkhout, and al. (2003).
We see that the process of authorization is characterized by different time variables that combine stringency (the sunset date) and flexibility (review date), but also pragmatism (cost-benefit analysis) in order to support the innovation process from invention to diffusion. In a recent report on the impact of REACH on innovation in the chemical industry (Eurostat, 2009), it is shown that the process of authorization "added value in terms of innovation and competitiveness"; it is even stated that "the candidate list (and the SIN (Substitute It Now!) list) is useful to start and drive processes and consultations that lead to removal of those substances and development of substitutes". The report stresses that REACH has had a positive impact on research into new substances since the number of registrations of new substances has increased in line with the expectations before REACH was adopted (Eurostat, 2009).

The second innovation-friendly mechanism present in REACH lies in the extended responsibility to users since they are now responsible for the compliance of their factors of production to the requirements of the new regulation. According to Wolf and Delgado (2003), innovation in the chemical industry is influenced by many factors, including the demand and supplier-client relationships. By extending the principle of responsibility, the aim of REACH is to place the environmental impact of the activity throughout the production chain, and to change the demand of downstream users towards environmentally friendlier products. The extension of the principle of responsibility is accompanied by the obligation to communicate in the supply chain. According to the Eurostat 2009 report, many companies state a positive impact on innovation of that communication4. "The communication in the supply chain provides chemical companies with new information about customers and their needs" and increase their capacity to innovate. This illustrates the importance of information in the innovation process as well as the need for coordination and collective action to spur innovation (Dosi, 1988; Gaffard, 2003).

Typically, REACH must stimulate the development and adoption of alternatives to organic solvents. Solvents have been highly regulated and the usage of organic solvents in Europe is ruled by the EC Directive 1999/13/CE. However, the impact of this Directive concerning the reduction of volatile organic compound (VOC) emissions in the chemical and metallurgical industries appears to be ambiguous (Belis-Bergouignan et al., 2004).

4 In their paper, Koch and Ashford (2006) “argue that informational tools can be made more technology inducing -and thus more oriented towards environmental innovations- than they are under current practices, with or without complementary regulatory mechanisms, although a combination of approaches may yield the best results”.
Although a strong and mixed incentives framework prevails, some sector-specific factors impede technological adoption. In the surface treatment activity for instance, the product performance criterion, which is a fundamental one in the supplier-user relationship, explains why solvent substitution cannot extend throughout the metallurgical industry. Since the introduction of REACH, organic solvents are subject to the authorization procedure which requires producers to develop and adopt alternatives. **Bio-solvents** are good candidates to replace organic solvents since they are less toxic, have lower VOCs emissions and are biodegradable (IRSST, 2010). Because of the extended producer responsibility, downstream users are now induced to change their preferences and to transmit their needs to suppliers regarding product quality constraints that must be achieved with alternative solvents. REACH can thus involve innovation in the product chain favoured by a partnership and a support from users in the experimentation stage of the new processes for the concerned applications.

3 The model

3.1 ABMs and the ODD protocol

REACH aims at “ensuring a high level of protection of human health and the environment while enhancing innovation and competitiveness”. In order to investigate such a relationship, we use an agent-based model (ABM) because simulation models provide a powerful tool for exploring such complex systems as innovation and industrial dynamics. ABM is used to deal with complex systems made up of autonomous entities and allows modeling the behavior of heterogeneous agents, technological diversity and the change in selection environment that result from policy measures.

The objective is to study how system level properties emerge from the adaptive behavior of individuals as well as how, in turn, the system affects individuals. This model is used as a learning tool, and is not intended for accurate prediction. It aims to provide insights about the directional effect of instruments underlying the authorization procedure of REACH on firms’ innovation strategy and the associated shift to alternative substances.

5 Cf. http://www.substitution-cmr.fr/. Other alternative solutions to organic solvents may exist such as solvent-free reactions or environmentally benign solvents -such as supercritical fluids, in particular supercritical CO2 (e.g. decaffeination of coffee beans), ionic liquids (organic salts that are liquid at room temperature) and water-. In our model we will only consider potential substitution of organic solvents by biosolvents.
In order to present the model we have built, we use the ODD protocol (Grimm and al., 2006, 2010). The ODD protocol provides a standard protocol for describing ABMs in order to make them easier to analyze, understand and communicate.

The protocol consists in structuring the information about an ABM in the same sequence: Overview, Design concepts and Details (cf. Table 1). The logic behind the ODD sequence is to first provide context and general information, followed by more strategic considerations, and finally more technical details. Such a sequence allows the reader to easily absorb information in a progressive way.

<table>
<thead>
<tr>
<th>Table 1: The three blocks of the ODD protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>State variables and scales</td>
</tr>
<tr>
<td>Process overview and scheduling</td>
</tr>
<tr>
<td>Design concepts</td>
</tr>
<tr>
<td>Design concepts</td>
</tr>
<tr>
<td>Details</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Submodels</td>
</tr>
</tbody>
</table>

3.2 Description of the model

We follow the sequence given in Table 1.

3.2.1 Purpose

The purpose of our model is to understand how different configurations in the policy design of REACH affects the dynamics of eco-innovation and shape market selection and innovation. In our model we take into account supplier-user interactions since they represent an essential element in the development of new technologies, particularly in the chemical industry. As well some stylized facts that illustrate the competition between organic solvents and biosolvents in the surface treatment activity are considered. The objective is to examine in which extent different combinations of flexible and stringent instruments of the REACH regulation can lead to the development and diffusion of alternative solvents (biosolvents).

3.2.2 State variables and scales

The model comprises eight low-level entities: supplier, client, two types of product and four product characteristics.

Suppliers produce and sell products (technology 1 and/or technology 2). They are characterized by the state variables: identity number, identity of the technology portfolio, fixed costs and adoption threshold. Suppliers which do not perform well and do not have enough budget will exit the market; they are
automatically replaced by new entrants. These new entrants are characterized by the same state variables as the suppliers.

Clients buy and use one type of product (technology 1 or technology 2) in their production processes. They are characterized by the state variables: identity number, identity of the product they have bought, preferences, requirement thresholds, reservation price and minimum product quality.

There are two types of product-related technology that may co-exist: T1 (e.g. organic solvents) and T2 (e.g. biosolvents). Technology 1 is characterized by an identity number and technology 2 is characterized by an identity number and initial switching costs. At the start of the simulation run, only T1 exists and is developed by the suppliers.

Each product is described by four attributes in a Lancaster way (1971): technical performance, production cost, VOCs emissions, biodegradability. Technical performance X_k is related to the solvent power and is measured by the Kauri butanol index (Kb). A good solvent power is characterized by an index of Kb greater than 100. Production costs Cost_k depend on the raw materials that are used (petrol vs biomass) but also on the production facility (traditional refinery vs biorefinery). Emissions of volatile organic compounds (VOCs), VOC_k represent those gases and vapors containing chemical elements emitted by the solvent. VOCs are emitted during the manufacture, storage or use of the solvent. The volatility of these chemicals can have serious consequences on health and the environment. VOCs emissions are measured by the evaporation rate in kilo Pascal. Biodegradability, Bio_k, represents the capacity of air emissions from solvents to degrade readily and to have a short atmospheric lifetime.

Each of these attributes is characterized by a potential of evolution which can be exploited by suppliers according to their R&D and innovation activities. The potential of evolution takes into account the difference in order of magnitude between the green (biosolvent) and the conventional technology (organic solvent). Technical performance is characterized by a maximum limit X_{max}; production costs are characterized by a minimum limit Cost_{min}; VOCs emissions are characterized by a minimum limit VOC_{min} and biodegradability is characterized by a maximum limit Bio_{max}. These outer limits are assumed to be different depending on the technology T1 or T2. In particular, the potential of improvement regarding environmental characteristics is higher for the Green technology T2 than for the conventional technology T1: $\text{VOC}_{\text{min}} \text{T2} < \text{VOC}_{\text{min}} \text{T1}$ and $\text{Bio}_{\text{max}} \text{T2} > \text{Bio}_{\text{max}} \text{T1}$. We also take into account the technology difference between T1 and T2 in the initial values. Since the green technology T2 is emergent compared to the well-established T1, we assume that T2 has a disadvantage in terms of techno-economic characteristics such that production costs are higher and technical performance is lower than T1 (cf. Table 2).
Table 2: Overview of processes, parameters and default values of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>10</td>
</tr>
<tr>
<td>Number of clients</td>
<td>200</td>
</tr>
<tr>
<td>Number of products</td>
<td>Number of characteristics</td>
</tr>
<tr>
<td>T1</td>
<td>Xmax, Costmin, VOCmin, Biomax</td>
</tr>
<tr>
<td>T2</td>
<td>Xmax, Costmin, VOCmin, Biomax</td>
</tr>
<tr>
<td>Potential for each product characteristic</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>100; 0.4; 2; 0.5</td>
</tr>
<tr>
<td>T2</td>
<td>100; 0.4; 0; 100</td>
</tr>
<tr>
<td>Initial values of each product characteristic</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>X₀, Cost₀, VOC₀, Bio₀</td>
</tr>
<tr>
<td>T2</td>
<td>X₀, Cost₀, VOC₀, Bio₀</td>
</tr>
<tr>
<td></td>
<td>100; 0.5; 23; 0.025</td>
</tr>
<tr>
<td></td>
<td>32; 3; 0.05; 5</td>
</tr>
<tr>
<td>Purchase decision</td>
<td></td>
</tr>
<tr>
<td>Client’s preferences: a, b, c, d</td>
<td>[0; 1]</td>
</tr>
<tr>
<td>Bandwagon effect: e</td>
<td>0.005</td>
</tr>
<tr>
<td>Reserve price</td>
<td>[0.75; 4.5]</td>
</tr>
<tr>
<td>Minimum product quality</td>
<td>[32; 100]</td>
</tr>
<tr>
<td>Total budget</td>
<td></td>
</tr>
<tr>
<td>Initial budget</td>
<td>15</td>
</tr>
<tr>
<td>Mark-up rate µ</td>
<td>0.5</td>
</tr>
<tr>
<td>Fixed costs CF</td>
<td>2</td>
</tr>
<tr>
<td>Exit/Entry</td>
<td></td>
</tr>
<tr>
<td>Absorptive capacity</td>
<td>[0.8; 1.2]</td>
</tr>
<tr>
<td>Technology portfolio</td>
<td></td>
</tr>
<tr>
<td>Decision to adopt T2</td>
<td></td>
</tr>
<tr>
<td>First-mover advantage φ</td>
<td>1</td>
</tr>
<tr>
<td>Adoption threshold</td>
<td>[0; 1]</td>
</tr>
<tr>
<td>Initial switching costs</td>
<td>10</td>
</tr>
<tr>
<td>Decision to leave T1</td>
<td></td>
</tr>
<tr>
<td>ROImin</td>
<td>1</td>
</tr>
<tr>
<td>Innovation process</td>
<td></td>
</tr>
<tr>
<td>R&D budget</td>
<td></td>
</tr>
<tr>
<td>R&D rate δ</td>
<td>0.2</td>
</tr>
<tr>
<td>R&D share allocated to T1 δ₁</td>
<td>[0; 1]</td>
</tr>
<tr>
<td>Speed α₀</td>
<td>0.25</td>
</tr>
<tr>
<td>Scale parameters β₁, β₂, β₃, β₄</td>
<td>0.019; 0.079; 0.052; 0.03</td>
</tr>
<tr>
<td>R&D watch</td>
<td></td>
</tr>
<tr>
<td>Speed αᵢ</td>
<td>0.25</td>
</tr>
<tr>
<td>Knowledge accumulation</td>
<td>Scale parameter αₖ</td>
</tr>
<tr>
<td>Kmax</td>
<td>1</td>
</tr>
<tr>
<td>Switching costs</td>
<td>Scale parameter αₛ</td>
</tr>
<tr>
<td>SCmin</td>
<td>5</td>
</tr>
<tr>
<td>Rebuy process</td>
<td></td>
</tr>
<tr>
<td>Scale parameter ε</td>
<td>1</td>
</tr>
<tr>
<td>Requirement thresholds (X, Price, VOC, Bio)</td>
<td>100; 0.75; 23; 0.025</td>
</tr>
</tbody>
</table>
3.2.3 Process overview and scheduling

In the model, one time step represents one period of purchase and simulations are run for 500 periods. Within each time step, six modules are processed in the following order: purchase, budget, entry/exit, technology portfolio, R&D watch/innovation, rebuy.

Purchase depends on the utility that a product, given its four attributes, brings to a client provided economic and technical constraints are first satisfied (reserve price and minimum technical quality). Once a product is selected by a client, the corresponding supplier registers a sale.

Budget of each supplier takes into account the R&D expenses and the profit derived from the sales.

Within the **exit/entry** module, each supplier with a negative budget exits and is replaced by a new firm so that a constant number of suppliers is observed over the whole time period. Each new entrant will be able to copy an installed firm with more or less success (absorptive capacity). (cf. Fig.1)

![Diagram](image.png)

Fig.1. The execution order of the REACH model processes: purchase, budget, exit/entry modules.

Technology portfolio enables a supplier to adopt T2 or not on the one hand and to keep or abandon T1 on the other hand so that in the end the supplier’s portfolio can be constituted by T1 and/or T2.
Fig.2. The execution order of the REACH model processes: technology portfolio module.

R&D watch and innovation allow suppliers to improve the characteristics of their product. R&D watch concerns only suppliers that have not yet
adopted T2 but are required (by regulation) to prove they are searching for substitutes and thus accumulate knowledge on T2. Innovation activities may then involve improvements on T1 and/or T2 depending on the technology portfolio of each supplier.

Fig.3. The execution order of the REACH model processes: R&D watch/innovation module

Rebuy allows each client to compare the performance achieved by its current supplier with its requirement levels. If the current supplier does not under-performs, the client keeps the same supplier; otherwise, the client switches to a new supplier and selects one with the purchase module.
3.2.4 Design concepts

Our model draws on basic principles developed by the evolutionary theory of technological change (Chiaromonte and Dosi, 1993; Malerba and al., 1999, among others). Thus, a strong emphasis is put on dynamics, changing structures and disequilibrium processes with an evolutionary perspective. We thus find several design concepts common to ABMs in our model.

According to the evolutionary approach, bounded rationality characterizes economic agents that have limited cognitive capacities to collect and treat information. Suppliers seek for increased market share thanks to innovation while users seek for selecting the best product according to their preference and requirement criteria. Individuals cannot predict the future conditions they will experience; they are myopic and their decisions follow some routines and a satisficing principle rather than a maximizing one. In our model, suppliers make their decisions regarding technology portfolio by considering specific thresholds that reflect bounded rationality. Likewise, in the rebuy module, clients compare the performance achieved by their current supplier with their own requirement threshold and decide to keep or leave the supplier.

The decision rules are adaptive which means the agents adapt according to their performance and their past experience. In our model, suppliers adapt their strategy of R & D investment based on sales achieved in the past, and customers adapt their requirement levels according to suppliers’ performance. Adaptation is thus modeled through the change in threshold levels used in the decisions of agents.
Given that decision rules are agent-specific, **heterogeneity** among individuals is a core aspect of such an evolutionary theory. Interactions between heterogeneous agents generate permanent diversity. Industry dynamics emerge from the behavior of the heterogeneous individuals; on the one hand, each supplier decides which technology he will develop or adopt (T1 and/or T2) and then which product characteristics needs to be improved; on the other hand, each client decides which product to purchase and which supplier must be kept or replaced by another one. Each entry of a new firm replacing a failing supplier corresponds to the creation of a new individual endowed with attributes based on the industry average performance.

Innovation is an endogenous and uncertain process. Indeed, firms cannot know with certainty the results of their R&D activity. That is why we model a stochastic process of innovation. Other stochastic processes are included in our model: all behavioral parameters are randomly drawn. Like the innovation process, the accumulation of knowledge that results from technology watch on T2 is stochastic. Lastly, the selection of a supplier by a client is also based on a purchase probability (reflecting errors or imperfect information).

Regarding innovation, a distinction is implicitly made between incremental and radical innovation. **Incremental** innovation allows small changes whereas **radical** innovation leads to a technological jump with significant cost and experience effects. In our model, the adoption of T2 brings radical changes that are materialized by high switching costs.

3.2.5 Initialization

At the start of a simulation run, the number of suppliers is 10 and the number of users is 200. Some initial values of the state variables are chosen randomly in a range of parameters. Others are scale parameters which have been set to plausibly calibrate the model. Regarding product characteristics (VOCs emissions, biodegradability, costs and technological performance), initial values are based on data to account for the difference in order of magnitude between organic solvent and biosolvent (cf. http://action4p.net/solvants, http://www.ineris.fr/rsde/fiches/fiche_dichloromethane_2005.pdf, http://www.irsst.qc.ca/media/documents/PubIRSST/B-079.pdf).

3.2.6 Input data

The model does not use input data to represent time-varying processes.

3.2.7 Submodels

Here, we specify the equations and the assumptions underlying them to better understand the modules listed in process overview and scheduling (cf. part 3.2.3).
Purchase: the demand for products is expressed as a demand for specific product characteristics in the Lancaster vein. The purchase probability is proportional to the utility derived by each client ($j=1,\ldots,200$) from each product present on the market ($k=1,2$). We consider the following utility function:

$$U_{k,i,t} = \left(X_{k,i,t} - A \right)^a \times \left(B - P_{k,i,t} \right)^b \times \left(C - Cov_{k,i,t} \right)^c \times \left(Bio_{k,i,t} - D \right)^d \times
\left(Ms_{i,t} + u(0,0.1) \right)^e$$

(1)

With $a, b, c, d, e \in [0,1]$.

The purchase decision depends on the performance achieved by each supplier ($i=1,\ldots,10$) on each characteristic and on the client’s preferences with respect to the product characteristics represented in the parameters a, b, c, d. A, B, C and D are technical parameters only used to avoid negative terms in the utility calculation. $u(0,0.1)$ is drawn from a uniform distribution with values between 0 and 0.1.

The parameter e can be interpreted as a bandwagon effect (Lebeinstein, 1950) reflecting imitation behaviors. Indeed, there is information asymmetry regarding supplier performance. So clients refer to the behavior of other customers buying similar goods (Cowan et al, 1997). The clients use also the market share of the firm (Ms) which reflects the relative reputation of the supplier. The market share as an indicator provides information on the quality of the product observed by customers who have already adopted.

Each client is also supposed to be limited by economic and technical constraints. So we assume a reserve price and a minimum technical performance for each client. If one of these constraints is not satisfied when selecting a product on the market, the associated utility will be equal to zero.

The price P is deduced from the production cost by applying a mark-up rate:

$$P_{k,i,t} = (1 + \mu) \times Cost_{k,i,t}$$

(2)

Where μ is a mark-up rate over production costs. For simplicity, μ is supposed to be constant and identical for every firm.

Budget: The budget B is determined by the residual budget from the previous period, the profit and the R&D expenses:

For typical suppliers:

$$B_{i,t} = B_{i,t-1} + \pi_{i,t-1} - RD_{i,t-1}$$

(3)

For new T2 adopters:

$$B_{i,t} = B_{i,t-1} + \pi_{i,t-1} - RD_{i,t-1} - SC_{i,t-1}$$

(3')

Where SC are the switching costs resulting from the adoption of T2.
The profit is determined as follows:\(^6\):

\[
\pi_{i,t} = (\mu \times \text{Cost}_{i,t} \times Q_{i,t}) - FC
\]

(4)

Where \(Q_{i,t}\) is the total number of products sold by firm \(i\); FC are the fixed costs which are supposed to be identical for all the firms for simplicity reasons.

Entry/Exit processes: Firms with a negative budget \(B\) go bankrupt and disappear from the market. When one firm exits the market, we assume that a new firm enters so that the number of firms in the industry is kept constant. Entry occurs with a new firm imitating an existing one. This choice is based on probabilities proportional to the installed firms’ market shares. The new firm copies the technology portfolio and the product characteristics of the imitated firm. We assume that the new firm has an absorptive capacity which enables her to copy the attributes of the imitated firm in a range of \([0.8;1.2]\). This allows the new entrant to under-perform or inversely to over-perform in comparison with the imitated firm.

The initial budget \((B)\) and the initial fixed costs \((FC)\) of the new firm are set in the same way as for the firms created at the start of a simulation run. The knowledge stock \((K)\) and the switching costs \((SC)\) of the new firm are function of the industry average.

Technology portfolio: Every period, firms examine the possibility to change their technology portfolio. They compare an adoption index with a certain threshold.

When T2 has not yet been adopted by anyone, we have the following adoption index:

\[
AdIndex_{i,t}^{T2} = K_{i,t-1} \times (\phi)
\]

(5)

\(K\) stands for the knowledge stock cumulated on the green technology derived from the firm’s activity of technological watch. \(\phi\) is a parameter reflecting the “first-mover advantage” i.e. the advantage gained by the initial first firm adopting T2.

When T2 has already been adopted, the probability that a firm adopts the Green technology T2 depends on the following adoption index:

\[
AdIndex_{i,t}^{T2} = K_{i,t-1} \times (Ms_{T2}^{T2})
\]

(5’)

\(Ms^{T2}\) represents the total market share of the Green technology T2. Thus the probability to adopt T2 depends positively on the stock of knowledge \(K\) accumulated on T2 but also on how T2 has diffused on the market.

\(^6\) After simplification of \(\Pi=p \times Q-TC\).
The decision to adopt T2 follows a two steps procedure. First, the firm compares its adoption index with an adoption threshold under which the firm will not adopt T2. If its adoption index is above the threshold, then the second step determines if the firm has a sufficient budget to bear the switching costs related to the green technology.

For firms that decide to adopt the green technology, they can continue to produce and sell the conventional technology T1. They will have a technology portfolio constituted of T1 and T2. However firms can decide to abandon the conventional technology and focus only on the development of the green technology T2. Here we assume that firms calculate the return on investments of technology T1 and compare it with a certain threshold. The return on investment is based on the ratio:

\[RO_{i,t}^{T1} = \frac{P_{e,t}^{T1} \times o_{e,t}^{T1}}{R&D_{i,t-1}} \]

The ratio turnover/R&D gives an indication of the ability of the technology to recover one euro spent in R&D in the total return. The lower the return on investment of technology T1 compared to the minimum threshold, the higher the likelihood to be abandoned.

Innovation process and Green technological watch: At each period, every firm can improve the product performance in their portfolio by carrying out R&D and innovation activities. Every firm will allocate a certain proportion \(\delta \) of its budget to R&D activities:

\[RD_{i,t} = \delta \times B_{i,t} \]

Then, each firm is assumed to split its global R&D budget between both technologies T1 and T2:

\[RD_{1,i,t} = \delta_1 \times RD_{i,t} \]

\[RD_{2,i,t} = (1 - \delta_1) \times RD_{i,t} \]

Where \(\delta_1 \) is the share of total R&D allocated to R&D1 (technology T1). For firms developing only the green technology T2, \(\delta_1 = 0 \). For firms developing both technologies T1 and T2, \(\delta_1 = 0.5 \). For firms developing only the conventional technology T1, \(\delta_1 = 0.5 \) since they devote the other part to technological watch on the green technology T2 (RDwatch).

Green technology watch follows a stochastic process. Success occurs if the following condition is satisfied:

\[1 - e^{-a_w \times RD_{t,t} \times RD_{t,t}} \geq u(0,1) \]
Where α_w is a scale parameter determining the speed at which the level of the current R&D expenditure allows knowledge accumulation and $RD_{2,t}$ represents R&D expenses allocated to technology T2. $u(0,1)$ is a uniform random value selected between 0 and 1. The closer to 1, the more difficult it is to satisfy the condition (10) with a given R&D investment. In case of success, new knowledge on T2 is accumulated and the switching costs linked to the potential adoption of T2 decrease.

\[
K_{t,t} = K_{t,t-1} + \alpha_K \times u(0,1) \times (K_{max} - K_{t,t-1})
\]

(11)

\[
SC_{t,t} = SC_{t,t-1} - \alpha_{sc} \times u(0,1) \times (SC_{t-1} - SC_{min})
\]

(12)

Where α_K and α_{sc} are scale parameters.

The innovation process is similar to the previous procedure. Two steps are considered for each product characteristic. First, the innovation probability depends on the R&D investment allocated to the technology. Success of innovation depends on the following condition:

\[
1 - e^{-\alpha_l \times RD_{k,t}} \geq u(0,1)
\]

(13)

Where α_l represents the speed of the innovation process and $RD_{k,t}$ the R&D expenses devoted by firm i to product k at time t.

Then, in case of success, the outcome of innovation is given by:

For the technical performance X,

\[
\Delta X_{k,t} = \beta_1 \times u(0,1) \times (X_{max} - X_{k,t-1})
\]

(14)

For the production costs,

\[
\Delta Cost_{k,t} = \beta_2 \times u(0,1) \times (Cost_{k,t-1} - Cost_{min})
\]

(15)

For the VOC emissions,

\[
\Delta VOC_{k,t} = \beta_3 \times u(0,1) \times (VOC_{k,t-1} - VOC_{min})
\]

(16)

For Biodegradability,

\[
\Delta Bio_{k,t} = \beta_4 \times u(0,1) \times (Bio_{max} - Bio_{k,t-1})
\]

(17)

Where β_1, β_2, β_3 and β_4 are scale parameters; $u(0,1)$ is a uniform random value selected between 0 and 1 which reflects the efficiency of the R&D activity and thus impacts the innovative outcome. The last term of the equation represents the distance to the technological frontier associated to each product characteristic. By doing so, when the level of a given product characteristic comes closer and closer to the limit of what is achievable with the considered product design, a given R&D expenditure will achieve less and...
less further progress (lower technological opportunities and R&D decreasing returns).

Rebuy: each client j is assumed to use one single product at the same time and to renew its purchase every period. When renewing the product, the client compares its minimum thresholds on each characteristic with the performance actually achieved by its current supplier. Requirement thresholds change with the average performance in the industry.

For the technical performance criteria,

$$\text{Lim}_j\text{min}X_{k,i,t}^j = \text{Lim}_j\text{min}X_{k,i,t-1}^j + \varepsilon \times \left[\max \left(0, a \times (\bar{X}_{k,i,t} -\text{Lim}_j\text{min}X_{k,i,t-1}^j) \right) \right]$$ \hspace{1cm} (18)

For the product price criteria,

$$\text{Lim}_j\text{max}Price_{k,i,t}^j = \text{Lim}_j\text{max}Price_{k,i,t-1}^j - \varepsilon \times \left[\max \left(0, b \times (\text{Lim}_j\text{max}Price_{k,i,t-1}^j - \bar{P}_{k,i,t}) \right) \right]$$ \hspace{1cm} (19)

For the VOCs emissions criteria,

$$\text{Lim}_j\text{max}VOC_{k,i,t}^j = \text{Lim}_j\text{max}VOC_{k,i,t-1}^j - \varepsilon \times \left[\max \left(0, c \times (\text{Lim}_j\text{max}VOC_{k,i,t-1}^j - \bar{VOC}_{k,i,t}) \right) \right]$$ \hspace{1cm} (20)

For the biodegradability criteria,

$$\text{Lim}_j\text{max}Bio_{k,i,t}^j = \text{Lim}_j\text{max}Bio_{k,i,t-1}^j + \varepsilon \times \left[\max \left(0, d \times (\bar{Bio}_{k,i,t} - \text{Lim}_j\text{max}Bio_{k,i,t-1}^j) \right) \right]$$ \hspace{1cm} (21)

The parameters a, b, c and d represents the client’s preferences for the considered characteristic; ε is a scale parameter; for each product k, the average performance of industry on each characteristic is given by:

$$\bar{X}_{k,i,t} = \frac{\sum_{j=1}^{N} X_{k,i,t,j}}{N}; \quad \bar{VOC}_{k,i,t} = \frac{\sum_{j=1}^{N} VOC_{k,i,t,j}}{N}; \quad \bar{P}_{k,i,t} = \frac{\sum_{j=1}^{N} P_{k,i,t,j}}{N}; \quad \bar{Bio}_{k,i,t} = \frac{\sum_{j=1}^{N} Bio_{k,i,t,j}}{N}.$$

If one of the minimum thresholds is not met (i.e. is below the current supplier’s performance), then the client leaves the current supplier and chooses another one through the purchase procedure.

4 Results

In this section we first expose the baseline simulations without taking into account regulation before analyzing the impact of regulation upon the industrial dynamics.
4.1 The baseline simulations

Based on several indicators characterizing the industrial dynamics, the results of our benchmark are drawn from a battery of 500 simulations.

4.1.1 Main indicators characterizing the industrial dynamics

The following indicators are used to exhibit the main characteristics of the industrial dynamics:

- The inverse Herfindahl-Hirshman index of concentration ($1/HHI$ with HHI the sum of the squares of the firms’ market shares), which value is comprised between 1 (monopoly) and N (atomicity). The higher $invHHI$ the higher the degree of competition.
- The number of failures, which takes into account the number of exiting firms in each period. In our model, the higher the number of failures, the higher the number of new entrants that come and replace the exiting firms.
- The respective market share of technology T1 and technology T2.
- The first time of adoption of technology T2, which accounts for the time window during which emergence of T2 can take place.
- A global environmental indicator which traces back the stock of VOCs emissions at the industry level. We consider the following equation:

$$VOCStock_t = VOCStock_{t-1} \times \left[1 - \frac{TotalBio}{M \times Biomax_{T2}}\right] + TotalVOC_t$$ (22)

Where TotalBio represents the total biodegradability of products sold in the current period, M the total number of clients and BiomaxT2 the maximum limit of biodegradability. According to equation (22), the current stock of VOCs emissions depends on the previous stock of VOCs less degraded emissions thanks to biodegradability plus the current flow of emitted VOCs. Such a global environmental indicator enables to grasp the ability of the industry to decrease its VOCs emissions through time thanks to innovation.

For each indicator, the average over 500 simulations is computed at different time steps: 0, 50, 100, 150 and 200.

4.1.2 Results from a battery of 500 simulations

Results from the baseline scenario show a clear domination in terms of market share of technology T1 compared to technology T2 which only holds a market share close to 35% in period 200 (cf. Fig. 5). Technology T2 is first adopted before period 50 and experiences a slow take-off from that period. Thus the dynamics is characterized by a small diffusion of the new technology T2 and a persistent domination of T1 through time.

Simulations show that the very first adoption of technology T2 occurs between period 2 (minimum over 500 simulations) and period 49 (maximum over 500 simulations) with an average of 15.
Concomitantly the global stock of VOCs increases during a rather long period (until period 150) before starting to slow down. This indicator shows that VOCs emissions can decrease in the industry but with a time-lag compared to the first adoption of T2 due to its slow diffusion (cf. Fig. 6).

Market concentration such as measured by the inverse Herfindahl index tends to slightly decrease in a first place (until period 50) before exhibiting a small increase (until period 100) and again a small but continuous decrease until period 200 (cf. Fig. 7). As to failures, their number increases over the whole period (cf. Fig. 8).

Thus the dynamics of our benchmark model has the following characteristics:
- Rather early first adoption of T2 but consecutive slow diffusion;
- Persistent domination of technology T1;
- Higher industrial concentration;
- Increasing shakeouts over time with increasing exits and new entries of firms.

4.2. The impact of regulation upon the market dynamics

Based on the previous benchmark configuration, we introduce the REACH regulation to study its effect upon the industrial dynamics of the simulated system. In this paragraph, we discuss how different combinations of flexible and stringent instruments designed on REACH regulation (the process of authorisation and the extended responsibility) create the incentives and the constraints to shape market selection and innovation.

4.2.1. The process of authorization

The purpose of the authorization process is to progressively replace substances of very high concern by other substances or technologies where these are economically and technically viable. Two action leverages are considered in our model.

First, **target-thresholds** for techno-economic performances of alternative solutions (X* and Cost*) are incorporated. In fact the granting or refusal of authorization is primarily based on the existence of economically and technically viable alternatives (cf. Fig.9). In our model, we assume that public authorities are fully informed about the existence of economically and technically viable solutions. In fact when the substance is included in a list of substances of concern, the public authorities (ECHA) request an investigation into the existence of a solution to the European Commission. Moreover, ECHA is driven by the information provided by the applicant; in particular the substitution plan and the analysis of alternatives that must accompany all request of authorization.

If technology T2 reaches both thresholds of technical and economic performance, then the public authorities can consider the existence of viable solutions and can prohibit the use of technology T1 after the sunset date. On the contrary, if technology T2 does not reach the target thresholds, the public authorities can consider that there are no techno-economically viable alternatives. In that case, authorizations are granted and firms can use technology T1 after the sunset date, but **only if** they prove that they carry out serious analyses of alternatives providing information on their R & D activity (cf. Fig. 9).

In our model, the budget allocated to **R&D watch on T2** is used to check whether a firm is searching for new alternatives. In our model, the budget
allocated to R&D watch on T2 is used to check whether a firm is searching for new alternatives. Below a certain threshold, authorization will not be granted. Above the threshold, authorizations are granted for a period and can be reviewed if “new information on possible substitutes is available”. The threshold for R&D watch depends on the average R&D watch performed in the industry multiplied by a parameter ($\alpha_{RD\text{watch}}$) which value expresses the degree of severity of regulation (the closer to 1 the stricter the regulation, the closer to 0 the softer the regulation).

Fig. 9 Flow diagram for authorization

The timing of regulation is the second action leverage for public authorities. Indeed an early sunset date associated to close revision dates can be considered to be strict. On the contrary a late sunset date and distant revision dates impose softer constraints. In order to take timing into account, we assume that the probability to adopt technology T2 (equation 5’) is modified as follows:

$$Adl_{n_1}^{T_2} = K_{i,t-1} \times (M_{s,t-1}^{T_2}) \times \left[\left(1 + \alpha_{RD\text{watch}} \right) \times \frac{1}{t} \right]$$ (5’’)

The meaning of T and thus its value depends on whether it is the first time a deadline is given to firms before public authorities check the existence of
suitable alternatives (in such a case, T=sunset date, T_sunset) or if authorization has been granted and subsequent checks will be carried out (in such a case T=the revision date, T_revision). \(\alpha_i \) is a parameter reflecting the credibility that a firm \(i \) confers to regulation (ranges between 0 and 1).

With equation (5''), we thus assume that regulation positively influences the adoption of the green technology T2: the earlier and the closer to the sunset date, the higher the adoption index; the more frequent the revision of authorization the higher the adoption index; the higher the credibility given to regulation, the higher the adoption index.

4.2.2 The extended responsibility

By extending the responsibility principle, REACH aims at changing the demand of downstream users of chemical products towards less toxic and harmful substances.

In order to take into account the change in clients’ environmental preferences in our model, we will now consider that preferences for VOC (parameter \(c \) in equations 1 and 20) and BIO (parameter \(d \) in equation 1 and 21) will change as follows:

\[
\begin{align*}
\alpha_j & = \alpha_{j-1} \times \left[1 + \alpha_i \right] \\
d_j & = \alpha_{j-1} \times \left[1 + \alpha_i \right]
\end{align*}
\] (23) (24)

\(\alpha_i \) is a parameter reflecting the credibility that a client \(j \) gives to regulation (ranges between 0 and 1). T will represent alternatively the sunset date or the revision date.

According to these equations, the closer the sunset date, the higher the priority given to VOC and BIO in the calculation of utility (equation 1) in the purchase module but also in the update of requirements in the rebuy module (equations 20 and 21).

4.2.3 Results

We study two opposite configurations (cf. Table 3), the “less stringent scenario” and the “more stringent scenario” depending on the target-thresholds (\(X^*, \text{Cost}^* \) and \(\text{R&DWatch}^* \)) and on the timing of regulation (\(T_{\text{sunset}} \) and \(T_{\text{revision}} \)).
Table 3: Policy variables in the two scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Target-thresholds</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Techno-economic</td>
<td>Sunset date</td>
</tr>
<tr>
<td></td>
<td>performances</td>
<td>Revision date</td>
</tr>
<tr>
<td></td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>Less stringent</td>
<td>High (99)</td>
<td>Late</td>
</tr>
<tr>
<td></td>
<td>Low (0.5)</td>
<td>Tsunset=150</td>
</tr>
<tr>
<td></td>
<td>Cost*</td>
<td>Distant</td>
</tr>
<tr>
<td></td>
<td>Low (0.1)</td>
<td>ΔTrevision=5</td>
</tr>
<tr>
<td></td>
<td>αRDwatch*</td>
<td></td>
</tr>
<tr>
<td>More stringent</td>
<td>Low (33)</td>
<td>Early</td>
</tr>
<tr>
<td></td>
<td>High (2)</td>
<td>Tsunset=50</td>
</tr>
<tr>
<td></td>
<td>High (0.9)</td>
<td>Close</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔTrevision=2</td>
</tr>
</tbody>
</table>

The mechanism is the following: at the sunset date, if the average cost of T2 is below the corresponding target-threshold and the average technical performance of T2 is above the corresponding target, then T1 is forbidden for every firm in the industry. If not, the budget of R&D watch is checked for each firm. If such a budget is below a certain threshold, then T1 is forbidden for the considered firm. If not, it is possible to continue developing T1 as if the authorization had been individually granted until a certain period of time. At the revision date, a similar sequential checking is made.

Preliminary results for both scenarios are presented below. They are derived from a battery of 500 simulations and depict the average at different time steps (0, 50, 100, 150 and 200) for the respective indicators.

The “less stringent scenario” is characterized by:
- A boost in the diffusion of T2 which succeeds in overtaking technology T1 even if it is rather late (cf. Fig. 9);
- A non elimination of technology T1 in spite of its decline in favour of T2;
- A significant decrease in the global stock of VOCs and a slightly earlier reversal of the trend compared to the benchmark (cf. Fig. 10);
- A small decrease in industrial concentration (cf. Fig. 11);
- Higher number of failures (cf. Fig. 12), due both to the reduction of the market size (some clients are not satisfied anymore and thus not provided) and to a fidelity effect when clients are satisfied with the green technology and keep the same supplier (cf. The rebuy module).
The “more stringent scenario” exhibits the following traits:

- A radical and early take-off of technology T2 (cf. Fig. 13);
- The complete elimination of technology T1 allowing technology T2 to become the superior technology;
- A strong and early decrease in the stock of VOCs (cf. Fig. 14);
- A strong increase in industrial concentration (cf. Fig. 15);
- A continuous and significant increase in the number of failures (cf. Fig. 16), mainly due to a lower market size and to a strong inertia effect through the fidelity relationship resulting from the rebuy process.
5 Conclusions

This paper intends to contribute to a better understanding of the relationship between policy design and eco-innovation through an agent-based model. Stringency, flexibility and timing of regulation are crucial to spur eco-innovation. These are key aspects to consider in the REACH regulation, especially to foster the development of alternative substances (like biosolvents) to replace toxic and harmful substances (like organic solvents).
The ABM model we propose in this paper is a first attempt in stylizing REACH and is original in many aspects: evolutionary modeling of innovation and industrial dynamics; vertical interactions between suppliers and users; technology portfolio; authorization procedure and extended producer responsibility.

The model is used as a learning tool, and is not intended for accurate prediction. It aims to provide insights about the directional effect of instruments underlying the authorization procedure of REACH on firms' innovation strategy and the associated shift to alternative substances.

References

policy to be innovation friendly”, *Final report CM International.*

Koch L., Ashford N., 2006, “Rethinking the role of information in chemicals policy: implications for TSCA and REACH”, *Journal of Cleaner Production, 14: 31-46.*

Acknowledgements

The authors would like to thank the Aquitaine Regional Council for its financial support in the ECOCHIM project.
2013-01 Raphaël Chiappini
Persistence vs. Mobility in Industrial and Technological Specialisations: Evidence from 11 Euro Area Countries

2013-02 Kevin D. Hoover
Was Harrod Right?

2013-03 Kevin D. Hoover
Man and Machine in Macroeconomics

2013-04 Isabelle Corbett-Etchevers & Aura Parmentier-Cajaiba
Toying with Regulation: ‘Strategizing Tools’ as Organizational Bricolage

2013-05 Aura Parmentier-Cajaiba
Research Diary Mapping: Enhancing Reflectivity in Process Research

2013-06 Richard Arena
Sraffa’s and Wittgenstein’s Crossed Influences: Forms of Life and Snapshots

2013-07 Christophe Charlier & Sarah Guillou
Distortion Effects of Export Quota Policy: An Analysis of the China - Raw Materials Dispute

2013-08 Cristiano Antonelli & Alessandra Colombelli
Knowledge Cumulability and Complementarity in the Knowledge Generation Function

2013-09 Marco Grazzi, Nadia Jacoby & Tania Treibich
Dynamics of Investment and Firm Performance: Comparative Evidence from Manufacturing Industries

2013-10 Anna Calamia, Laurent Deville & Fabrice Riva
Dynamics of Investment and Firm Performance: Comparative Evidence from Manufacturing Industries

2013-11 Laurent Larrouy
Bacharach’s ‘Variable Frame Theory’: A Legacy from Schelling’s Issue in the Refinement Program?

2013-12 Amel Attour
Adoption et modèles de diffusion régionale de l’innovation dans les gouvernements locaux: le cas du développement de l’é-Gouvernement en Lorraine

2013-13 Anaïs Carlin, Sébastien Verel & Philippe Collard
Modeling Luxury Consumption: An Inter-Income Classes Study of Demand Dynamics and Social Behaviors

2013-14 Marie-José Avenier & Catherine Thomas
Designing a Qualitative Research Project Consistent with its Explicit or Implicit Epistemological Framework

2013-15 Amel Attour & Maëlle Della Peruta
Le rôle des connaissances architecturales dans l’élaboration de la plateforme technologique d’un écosystème en émergence: le cas des plateformes NFC

2013-16 Evelyne Rouby & Catherine Thomas
Organizational Attention Elasticity: An Exploratory Case of Cement Production

2013-17 Małgorzata Ogonowska & Dominique Torre
Residents’ Influence on the Adoption of Environmental Norms in Tourism
2013-18 Isabelle Salle & Pascal Seppecher
Social Learning about Consumption

2013-19 Eve Saint-Germes & Sabrina Loufrani-Fedida
L’instrumentation de la GTEC au service de l’articulation entre compétences individuelles et employabilité : le cas de la plateforme eDRH06

2013-20 Francesco Quatraro & Marco Vivarelli
Entry and Post-Entry Dynamics in Developing Countries

2013-21 Dorian Jullien, Judith Favereau & Cléo Chassonnery-Zaïgouche
Rationality and Efficiency: From Experimentation in (recent) Applied Microeconomics to Conceptual Issues

2013-22 Nabila Arfaoui, Eric Brouillat & Maïder Saint-Jean
Policy Design, Eco-innovation and Industrial Dynamics in an Agent-Based Model: An Illustration with the REACH Regulation