THERMOECONOMICS

A Thermodynamic Approach to Economics

John Bryant

Third Edition

Electronic Version Chapter 9
© VOCAT International Ltd 2012

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the publisher.

Published by

VOCAT International Ltd
10 Falconers Field
Harpenden
Herts
AL5 3ES
UK

Third Edition

ISBN 978-0-9562975-3-2

The electronic versions of the book chapters are made available free on the website www.vocat.co.uk for personal and educational use only by interested readers. While the author has made every effort to be diligent and accurate in his researches, he cannot be held responsible for the use that readers may make of his work, and they should satisfy themselves as to logic and veracity of the conclusions drawn.

Citation for the book:

Contents

Preface

1 Introduction
 1.1 Historical Research 2
 1.2 Economics and the Ideal Gas 6

2 Stock and Flow Processes
 2.1 General Stock Model 19
 2.2 Monetary Stock Model 31
 2.3 Labour Sector 34
 2.4 Stocks of Economic Output 40
 2.5 Resource Stocks 46
 2.6 Environment Waste Stocks 48

3 Thermodynamic Principles
 3.1 First Law of Thermodynamics 50
 3.2 Second Law of Thermodynamics 59
 3.3 Constant Volume Process 63
 3.4 Constant Price Process 67
 3.5 Iso-trading Process 69
 3.6 Polytropic Process 71
 3.7 Isentropic Process 74
 3.8 Process Entropy 76
 3.9 Thermodynamics & Utility 81

4 Production and Entropy Processes
 4.1 A Simple Production System 89
 4.2 Reaction Kinetics 104
 4.3 Entropy and Maximisation 108
 4.4 The Cycle 113

5 Money
 5.1 Development & Elasticity 121
 5.2 Money Entropy 133
 5.3 Money Entropy & Interest Rates 140
Preface

This book, first published in 2009, stems from research that I began more than three decades ago when I was then working as group economist for the Babcock International Group. Prior to that, my formal university education had included degrees in engineering and management science – the latter in particular covering economics and operations research. What started out as a train of curiosity into parallels between the disciplines of economics and thermodynamics soon developed into something deeper.

Following publication of two peer-reviewed papers of mine on the subject in the journal *Energy Economics*, I was greatly encouraged in my research by other trans-disciplinary researchers with a similar interest, in particular, Dr László Kapolyi, who was then Minister for Industry of the Hungarian government, a member of the Hungarian Academy of Science and a member of the Club of Rome.

Not being based at a university and with no research grant at my disposal, my main thrust at that time had been to make a career as director of a consultancy and expert witness business and therefore, until more recently, opportunities to spend time on research had been few. Nevertheless, by the turn of the millennium I was able to find time alongside my consultancy to return to some research, and in 2007 published another peer-reviewed paper in the *International Journal of Exergy* entitled ‘A Thermodynamic Theory of Economics’, which was followed up with several working papers on monetary aspects and energy models. Interest in this work has been high, spurred on no doubt by general worldwide interest in energy and climate change.

This book and third edition is an attempt to bring together all the facets of the research into a coherent whole. Topics covered include the gas laws, the distribution of income, the 1st and 2nd Laws of Thermodynamics applied to economics, economic processes and elasticity, entropy and utility, production and consumption processes, reaction kinetics, empirical monetary analysis of the UK and USA economies, interest rates, discounted cash flow, bond yield and spread, unemployment, principles of entropy maximization and economic development, the cycle, empirical analysis of the relationship between world energy resources, climate change and economic output, and last aspects of sustainability.
Further developments have been added since the first and second editions, in particular, thoughts on production and entropy maximisation, order and disorder and relationships to the living world, which has necessitated re-organisation of some of the chapters. The chapter on money has been updated to incorporate empirical analyses of the recent upheavals in world economic activity from 2008 to 2011, though the conclusions reached have not changed, indeed, they have been reinforced.

The findings, interpretations and conclusions of this book are entirely those of my own, based on the research that I have conducted. While I have made every effort to be diligent and accurate, readers should satisfy themselves as to logic and veracity of the conclusions drawn. I hope that this third edition represents an improvement and advancement on earlier editions, but would welcome nevertheless any feedback, discussions and corrections on points that readers may have.

I am indebted to my wife Alison for all her support and for providing an atmosphere conducive to my research.

John Bryant
CHAPTER 9 THERMOECONOMICS AND SUSTAINABILITY

In neo-classical economics, sustainability in practice boils down to maximising utility in the form of consumption, usually of goods and services arising from economic production – so called economic capital. While natural capital can be included in this definition, unlimited substitution can be made between man-made and natural capital. Thus the only constraint placed upon consumers is that of a budget constraint – how much consumers have available to spend. This says little or nothing about outside systems – biological, ecological or other – which may have a bearing on consumers’ choices. It is just assumed that these can if necessary be replaced or augmented over time by human ingenuity through the economic process.

If it is accepted that economic systems, and by definition human driven ones, seek to maximise entropy gain in some manner, subject to prevailing constraints, one might proceed further to consider the question of whether such a goal is consistent with sustainability of both economic and ecological systems.

This debate has been summarised by Brekke (1997) and Ayres (1998) as the difference between ‘weak’ and ‘strong’ sustainability, and the substitutability between natural capital and manufactured capital. Weak sustainability may be consistent with preserving the development of the human economic system, but this may be at the expense of reducing the effectiveness of the ecological environment, such as irrevocable resource depletion and ecosystem damage, which do not appear in traditional economic assessment. Strong sustainability on the other hand seeks to conserve natural capital as well as manufactured capital.

Economic management is still highly orientated towards giving humans what they want, a better life, usually enshrined as more GDP per capita, and certainly not less.

Significant variations also exist of individual per capita economic wealth, both at international and national levels. More than 60% of world GDP is attributed to countries counting for only 20% of world population (source: CIA 2006). It is a matter of evidence as to the geographic source of the resources contributing to this economic wealth. Japan for example has few natural resources, yet managed in the second half of the 20th century to build an economy based on processing resource value imported from elsewhere, such as metal ores and energy, combined with technology know-how.
Economic life is not equal, and it can be readily appreciated that those with a ‘poorer’ lot might aspire to catch up with those more fortunate, particularly if economic and technological tools are at hand to facilitate this. In the more recent past both China and India, with very large burgeoning populations, have grasped the economic genie that economics has offered other economies, and are setting about becoming the manufacturing hub of the world. This involves consuming increasingly large amounts of energy and other resources.

The evidence appears to indicate, however, that the world is gradually moving from a position where the only constraints to human economic growth have been those of human, monetary and economic capital, to a position where natural capital also is seen as being of prime importance as a constraint in the scheme of things. Moreover, because natural capital is complex and involves some long timescales, the current position has been developing for some time without humankind being generally aware of the situation. Climate change is an example where scientific evidence and accepted opinion indicates a constraint arising from man’s interaction with the eco-system. There are other examples however, including resource depletion, fishing, farming, soil nutrient systems, deforestation, the hydrological cycle, the polar regions, the ozone layer, and waste accumulation and disposal. At a wider level humankind is only just beginning to comprehend how complex the eco-systems of planet Earth are, and what *Homo Economicus* may be doing to move them away from their equilibrium position, perhaps irrevocably. Numerous species of animate life are now threatened with decimation and some with extinction. Would Darwin, credited with the theory of evolution, have contemplated such a significant acceleration in extinction rates over such a short time?

Perhaps the biggest constraint that now exists is the sheer size of the human population that has grown on the back of economic capital based on non-renewable energy and renewable resources.

Neo-classical economics is not able to cater for this change in affairs, primarily because it is built on a circular flow of value between labour and economic capital, with little recognition that true value ultimately comes from resources and from natural capital, albeit that humankind provides the intelligence and management to harvest and garner these treasures. This has meant that until recently ecological economics has been regarded overwhelmingly as a side issue to mainstream economic thought. A considerable shift in accepted wisdom is now needed, away from a viewpoint that science has little or nothing to offer economics, towards
structuring around disciplines incorporating terms and measures that relate to current accepted scientific views of the way the world works. A thermodynamic approach must be among the leading contenders for such a change in viewpoint.

From the thermo-economic development at chapter 3, it was shown that the notion of utility in an economic sense is closely related to that of entropy, and in chapter 4 it was also posited that maximising potential entropy gain is consistent with both natural processes and those arising in ‘man-made’ economic systems. A formal link between output flow and maximisation of potential entropy gain can only be established however if account is taken of constraints acting upon economic systems. These constraints take the form of factors that can affect flow of output; not just a budget constraint, but specific factors that can influence whether output goes up or down. Factors identified in this book include not only traditional economic ones such as money supply, production capacity and employment, but those involving natural capital, such as resource constraints – both renewable and non-renewable – and those constraints arising from the eco-system such as climate change.

From a thermodynamic viewpoint a process is more sustainable if less harmful losses of exergy/productive content occur. This is more likely for a renewable resource, as losses generated from consumption can gradually be replaced by those of new resources entering the flow, nurtured by nature and the sun. However the position with a renewable resource is not guaranteed, for if over time the rate of productive content/exergy usage inclusive of Second Law losses is greater than the rate of replacement of productive content/exergy, it is likely that the resource will gradually reduce in size, in the manner of a non-renewable resource. Strong sustainability on a thermodynamic basis therefore will only be achieved if humankind abstracts value that can be fully replaced by the sun through the interlinking eco-system and subsystems humankind relates to, such that future generations of humanity and life on earth can prosper in sustainable harmony, without the ecological system being compromised.

For example, draining marine life from some oceanic areas (including removing seabed life via trawling) to a level where the stock biomass has negative marginal growth, affects reproduction, with an ensuing decline in stock levels, which may also affect other higher and lower level species in the aquatic system. It follows that if the human population continues to grow alongside a declining marine stock, then at some point particular oceanic areas could become barren and not support aspects of human life.
The same logic follows regarding the use of land to grow food and nurture farm animals. Consuming even more energy to produce fertilisers may improve yields, but forever reducing arable land in favour of production of consumptive products is a negative factor. No amount of exponential projection of human GDP will restore the source of food.

The net effect of a global policy that followed the weak sustainability path is that irretrievable natural resource depletion and ecosystem damage could escalate to a position where global constraints might force a severe retrenchment, if not something much more serious.

All of the above suggests that the key input to promoting strong sustainability may not be by humankind burning its way out by producing more GDP to feed its growing population in the hope that technology will solve the problem, but by consuming less. It is however quite contrary to human nature to reduce voluntarily an appetite for more, if not faced with an immediate constraint, and it is unlikely that individual nations and people would be willing to give up their way of living to the benefit of others unless, by international agreement and enforcement of such an agreement, each may be persuaded to reduce consumption if all suffer together. To date, international agreements on climate change policy, destruction of rainforests and harvesting of the oceans have not so far resulted in a significant change from the path of ‘same as usual’.

Even if action were taken, it is human nature (the potential entropy maximisation principle again) that humankind having made a saving in one direction, would wish to go out and use the saving for something else. Thus just reducing expenditure on a non-renewable form of energy to replace it with another ‘sustainable’ form may leave GDP proceeding apace, but the threat of more population and short-term consumption of other resources such as food, and potential overloading of the eco-system would remain.

While global taxation might provide a means at the international level of persuading those who consume natural capital to pay and fund for their preservation, it is another matter to obtain acknowledgment of their liability and to enforce the economic redistribution involved. For example, it is a matter of evidence as to whether carbon taxes so far have reduced demand for fossil-fired energy, and attempts to enforce fishing quotas in parts of the world have been met by many trying to circumvent them. Further to the point, however, is the use that such taxes collected might be put. Redistributing the money to maximise human personal benefit might negate a goal to conserve the ecosystem.
In times past, the most effective occurrences that have persuaded both governments and populace to pull together to solve a problem have been in times of war and of recession/depression with reduced income. These were times when the populace experienced ‘real’ pain from a constraint or force, as opposed to being told that a ‘threat’ of pain might occur in some period ahead.

Human actions to ensure a high level of strong sustainability rest on the populace of all countries taking a much longer term view than hitherto has been the case, based on continued review and research into links between human and ecological systems. Nevertheless the advent of modern communications has meant that most people in the world are by now aware of the problem, even if singly and collectively they have so far done little to change their ways. Ingenuity and thought may play a part in the solution, but technology on its own will not provide an answer.

All this suggests that possibly a more likely outcome in the decades to come is eventually some reduced sustainability of natural capital, affecting carrying capacity, with an associated effect on human activity, a levelling out or even a decline in population and, over time, moderation of economic output to levels commensurate with prevailing constraints.
REFERENCES

Ayres, R. U. Warr, B. Accounting for growth: The role of physical work'. Centre for Management of Environmental Resources, INSEAD.

Ayres, R.U. Warr, B. 'Two paradigms of production and growth' INSEAD.

Daly, H. E. (1992) 'Is the entropy law relevant to the economics of natural resources? Yes, of course it is!', Journal of Environmental Economics and Management, 23, pp. 91-95.

Debreu, G. (1959) 'The theory of value: An axiomatic analysis of economic equilibrium'

Farmer, J.D., Shubik, M. Smith, E. (2008) 'Economics: the next physical science?' Santa Fe Institute

Malthus, T. R. (1798) 'An essay on the principle of population'.

New York: Cambridge University Press.
science' New York: Cambridge University Press.
1947.
Advance in Energy Studies, Porto Venere, Italy.
thermodynamics and the global climate system: A review of the
maximum entropy production principle'. American Geophysical Union,
Reviews of Geophysics, 41, 4 / 1018
Patterson, M. (1998) 'Commensuration and theories of value in ecological
economics' Ecological Economics, 25, pp. 105-125.
rate of change of money wages in the United Kingdom 1861-1957’
Economica 25 (100) pp. 283-299.
Pikler, A. G. (1954) 'Optimum allocation in econometrics and physics',
Welwirtschaftliches Archiv.
Proops, J. R. (1985) 'Thermodynamics and economics: from analogy to
physical functioning'. Energy & Time in the Economic and Physical
Kluwer Academic, Dordecht.
Ruth, M. (2007) 'Entropy, economics, and policy' Universitat Bremen,
artec-paper Nr. 140
Stud. 4, pp. 155-61.
University Press.
Samuelson, P. A. (1964) 'An extension of the Le Chatelier principle'
Econometrica, 28, pp. 368-379.

Soddy, F. (1934) 'The role of money', *Routledge, London*.

DATA SOURCES

BP Statistical Reviews
Energy Information Administration (EIA), US Department of Energy
IEA
Intergovernmental Panel on Climate Change:
Third & Fourth Assessment Reports.
OECD
Penn World
United Nations
USA Census Bureau
www.bea.gov
www.statistics.gov.uk
www.federalreserve.gov
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Thermo-Economic</th>
<th>Thermodynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>P</td>
<td>Price</td>
<td>Pressure</td>
</tr>
<tr>
<td>V</td>
<td>Volume flow rate</td>
<td>Volume (3-D)</td>
</tr>
<tr>
<td>N</td>
<td>Number of stock units</td>
<td>Number of molecules</td>
</tr>
<tr>
<td>v (=V/N)</td>
<td>Specific Volume Rate</td>
<td>Specific Volume (1/density)</td>
</tr>
<tr>
<td>G (=PV)</td>
<td>Value flow rate</td>
<td>Energy</td>
</tr>
<tr>
<td>k</td>
<td>Productive Content/unit</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>Nk</td>
<td>Stock Productive Content</td>
<td>n.a.</td>
</tr>
<tr>
<td>T</td>
<td>Index of Trading Value</td>
<td>Temperature</td>
</tr>
<tr>
<td>S</td>
<td>Entropy</td>
<td>Entropy</td>
</tr>
<tr>
<td>s (=S/N)</td>
<td>Entropy per unit</td>
<td>Entropy per unit</td>
</tr>
<tr>
<td>F</td>
<td>Free Value (flow)</td>
<td>Free Energy (Helmholtz)</td>
</tr>
<tr>
<td>X</td>
<td>Free Value (flow)</td>
<td>Free Energy (Gibb)</td>
</tr>
<tr>
<td>f (=F/N)</td>
<td>Free Value per unit</td>
<td>Free Energy per unit</td>
</tr>
<tr>
<td>C_v</td>
<td>Specific Value (Const volume)</td>
<td>Specific Heat (Const volume)</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific Value (Const price)</td>
<td>Specific Heat (Const pressure)</td>
</tr>
<tr>
<td>n</td>
<td>Elastic Index</td>
<td>Index Expansion/Compression</td>
</tr>
<tr>
<td>γ (=C_p/C_v)</td>
<td>Isentropic Index</td>
<td>Isentropic Index</td>
</tr>
<tr>
<td>Q</td>
<td>Entropic Value flow</td>
<td>Heat Supplied/lost</td>
</tr>
<tr>
<td>W</td>
<td>Work Value flow</td>
<td>Work Done</td>
</tr>
<tr>
<td>U</td>
<td>Internal Value (stock value)</td>
<td>Internal Energy</td>
</tr>
<tr>
<td>u (=U/N)</td>
<td>Internal Value per unit</td>
<td>Internal Energy per unit</td>
</tr>
<tr>
<td>ψ</td>
<td>Equilibrium Constant</td>
<td>Equilibrium Constant</td>
</tr>
<tr>
<td>ξ</td>
<td>Lifetime Ratio</td>
<td>n.a.</td>
</tr>
<tr>
<td>ω</td>
<td>Value Capacity Coefficient C_v/k</td>
<td>C_p/k</td>
</tr>
</tbody>
</table>
INDEX

Active, 92-94
Anderson, 170
Annila, 5,111
Arrhenius, 94
Avogadro, 6, 22, 60
Ayres, 2, 3, 20, 22, 60,178, 210
Bacon, 170
Baron, 108
Baumgärtner, 3
Boltzmann, 7, 11, 38, 39
Bonds and gilts, 165-177
Brekke, 210
Bryant, 2, 4, 91
Candeal, 3, 81
Carnot, 114
Carriers, holders of value, 8
Chakrabarti, 3,38
Chakraborti, 3, 38
Chatterjee, 3, 38
Chen, 3
Climate change, 200-209
Club of Rome, 209
Cobb-Douglas, 82, 88
Constant price, 67-69
Constant volume, 63-66
Constrained maximisation, 2
Constraints, 102-104
Costanza, 2
Cycle, 113-117
Daly, 3
Darwin, 211
Degree of freedom, 65
Degree of value, 65
Distribution of income, 37-39
Domingos, 3, 81
Dragulescu, 3, 38
Economic entropy, 101-103, 140-
151, 156-157, 162-163, 165, 171-
177, 193-197, 201
Econophysics, 3, 33
Eco-system, 200-209
Elastic index, 70, 73, 77-79
Embodied value, 8, 13, 20
Emission intensity, 202-207
Energy capital stock, 180-181
Energy consumption per capita,
178-180
Energy intensity, 178-180
Energy resource substitution, 191-
193
Entropic index, 76-77
Entropic value, 54
Entropy, 61-62
Entropy and maximisation, 108-113
Environmental waste stock, 48
Equilibrium, 94-104
Equilibrium constant, 98-99
Estrella & Trubin, 169
Eyring, 100
Exergy, 20-21
Ferrero, 3, 38
Frederick, Loewenstein,
O’Donoghue, 173
First Law of Thermodynamics, 50-
59
Fisher, 2
Flow and non-flow, 6-7
Foley, 3, 81
Free value, 94-96
Gamma distribution, 39
Gas/chemical reactions, 90
Georgescu-Roegen, 1, 2
Gibbs, 2, 94
Goldberg, 4
Gompertz, 107
Greene, 108
Grubbeström, 3
Hannon, 2
<table>
<thead>
<tr>
<th>Author/Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen</td>
<td>140</td>
</tr>
<tr>
<td>Helmholtz free energy</td>
<td>94</td>
</tr>
<tr>
<td>Herwig</td>
<td>5, 110</td>
</tr>
<tr>
<td>Hicks</td>
<td>88, 140</td>
</tr>
<tr>
<td>Hicks-neutral technical progress</td>
<td>88</td>
</tr>
<tr>
<td>Hubbert</td>
<td>185</td>
</tr>
<tr>
<td>Ideal gas</td>
<td>6</td>
</tr>
<tr>
<td>Ideal economic equation</td>
<td>9-14</td>
</tr>
<tr>
<td>Ideal gas equation</td>
<td>6, 14</td>
</tr>
<tr>
<td>Inactive</td>
<td>92-94</td>
</tr>
<tr>
<td>Index of trading value</td>
<td>8-9</td>
</tr>
<tr>
<td>Interest rates</td>
<td>140-151</td>
</tr>
<tr>
<td>Internal energy</td>
<td>50</td>
</tr>
<tr>
<td>Internal value</td>
<td>50-53</td>
</tr>
<tr>
<td>IPCC</td>
<td>200-207</td>
</tr>
<tr>
<td>IS/LM model</td>
<td>140</td>
</tr>
<tr>
<td>Isentropic process</td>
<td>74</td>
</tr>
<tr>
<td>Iso-trading process</td>
<td>69-71</td>
</tr>
<tr>
<td>Joule cycle</td>
<td>115</td>
</tr>
<tr>
<td>Kay</td>
<td>4, 89</td>
</tr>
<tr>
<td>Keynes, Keynesian</td>
<td>119, 140</td>
</tr>
<tr>
<td>Kinetic theory of gases</td>
<td>6</td>
</tr>
<tr>
<td>Klein</td>
<td>37</td>
</tr>
<tr>
<td>Labour and unemployment</td>
<td>152-159</td>
</tr>
<tr>
<td>Law of diminishing marginal utility</td>
<td>82</td>
</tr>
<tr>
<td>Law of maximum entropy</td>
<td>production, 111</td>
</tr>
<tr>
<td>Le Chateliers Principle</td>
<td>2, 3, 4, 91</td>
</tr>
<tr>
<td>Leontief</td>
<td>25</td>
</tr>
<tr>
<td>Lifetime</td>
<td>19, 57</td>
</tr>
<tr>
<td>Limits to growth</td>
<td>2, 107</td>
</tr>
<tr>
<td>Liquidity preference</td>
<td>141, 168</td>
</tr>
<tr>
<td>Lisman</td>
<td>2</td>
</tr>
<tr>
<td>Logistic function</td>
<td>107</td>
</tr>
<tr>
<td>Lognormal distribution</td>
<td>37</td>
</tr>
<tr>
<td>Long & short dated bonds</td>
<td>155-177</td>
</tr>
<tr>
<td>Loschmidt</td>
<td>6</td>
</tr>
<tr>
<td>Lotka-Volterra model</td>
<td>197</td>
</tr>
<tr>
<td>Mackay</td>
<td>198</td>
</tr>
<tr>
<td>Malthus</td>
<td>209</td>
</tr>
<tr>
<td>Mahulikar</td>
<td>5, 110</td>
</tr>
<tr>
<td>Marginal entropic ratio</td>
<td>85</td>
</tr>
<tr>
<td>Martinás</td>
<td>3, 113</td>
</tr>
<tr>
<td>Marx</td>
<td>2</td>
</tr>
<tr>
<td>Maxwell Boltzmann Distribution</td>
<td>38-39</td>
</tr>
<tr>
<td>Meadows</td>
<td>2, 107, 209</td>
</tr>
<tr>
<td>Miguel</td>
<td>81</td>
</tr>
<tr>
<td>Mirowski</td>
<td>3</td>
</tr>
<tr>
<td>Monetarist school</td>
<td>119</td>
</tr>
<tr>
<td>Monetary stock model</td>
<td>31</td>
</tr>
<tr>
<td>Money</td>
<td>118-151</td>
</tr>
<tr>
<td>Money elasticity</td>
<td>121-133</td>
</tr>
<tr>
<td>Money entropy</td>
<td>133-151</td>
</tr>
<tr>
<td>Morganstern</td>
<td>108</td>
</tr>
<tr>
<td>Nelson & Siegel</td>
<td>170</td>
</tr>
<tr>
<td>Neo-classical economics</td>
<td>211</td>
</tr>
<tr>
<td>Non-renewable energy</td>
<td>183-191</td>
</tr>
<tr>
<td>Odum</td>
<td>2</td>
</tr>
<tr>
<td>OPEC</td>
<td>1</td>
</tr>
<tr>
<td>Open and closed systems</td>
<td>7</td>
</tr>
<tr>
<td>Otto cycle</td>
<td>115</td>
</tr>
<tr>
<td>Patriarca</td>
<td>3</td>
</tr>
<tr>
<td>Peak oil</td>
<td>185</td>
</tr>
<tr>
<td>Phillips curve</td>
<td>154-155</td>
</tr>
<tr>
<td>Pikler</td>
<td>2, 9</td>
</tr>
<tr>
<td>Polytropic process</td>
<td>71-74, 129-133</td>
</tr>
<tr>
<td>Population</td>
<td>198-200</td>
</tr>
<tr>
<td>Preferred habitat</td>
<td>168</td>
</tr>
<tr>
<td>Productive content</td>
<td>7-8, 24</td>
</tr>
<tr>
<td>Proops</td>
<td>3</td>
</tr>
<tr>
<td>Pure expectations</td>
<td>168</td>
</tr>
<tr>
<td>Purica</td>
<td>3, 38</td>
</tr>
<tr>
<td>Quantity theory</td>
<td>118</td>
</tr>
<tr>
<td>Rankine cycle</td>
<td>115</td>
</tr>
<tr>
<td>Reaction kinetics</td>
<td>104-107</td>
</tr>
<tr>
<td>Renewable resources</td>
<td>46, 191-193</td>
</tr>
<tr>
<td>Resource depletion</td>
<td>183-198</td>
</tr>
<tr>
<td>Resource stocks</td>
<td>46</td>
</tr>
<tr>
<td>Reversible & irreversible processes</td>
<td>51-53</td>
</tr>
<tr>
<td>Ruth</td>
<td>4</td>
</tr>
<tr>
<td>Salthe</td>
<td>5, 111</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Samuelson</td>
<td>2, 9, 89</td>
</tr>
<tr>
<td>Schandl</td>
<td>22</td>
</tr>
<tr>
<td>Schneider</td>
<td>4, 89</td>
</tr>
<tr>
<td>Schrödinger</td>
<td>4, 89</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>107</td>
</tr>
<tr>
<td>Smith</td>
<td>3, 81</td>
</tr>
<tr>
<td>Soddy</td>
<td>2</td>
</tr>
<tr>
<td>Söllner</td>
<td>3</td>
</tr>
<tr>
<td>Solow</td>
<td>88</td>
</tr>
<tr>
<td>Sousa</td>
<td>3, 81</td>
</tr>
<tr>
<td>Specific heat</td>
<td>57-64</td>
</tr>
<tr>
<td>Specific internal value</td>
<td>56</td>
</tr>
<tr>
<td>Specific money</td>
<td>122-130</td>
</tr>
<tr>
<td>Specific price</td>
<td>122-130</td>
</tr>
<tr>
<td>Specific value</td>
<td>57</td>
</tr>
<tr>
<td>Specific value constant volume</td>
<td>64-66</td>
</tr>
<tr>
<td>Specific value constant price</td>
<td>67</td>
</tr>
<tr>
<td>Specific volume rate</td>
<td>19</td>
</tr>
<tr>
<td>Steady state economics</td>
<td>3</td>
</tr>
<tr>
<td>Sustainability</td>
<td>210-214</td>
</tr>
<tr>
<td>Svensson</td>
<td>170</td>
</tr>
<tr>
<td>Swenson</td>
<td>111</td>
</tr>
<tr>
<td>Temperature</td>
<td>6-7, 56</td>
</tr>
</tbody>
</table>