IS PROTECTION GOOD OR BAD FOR GROWTH?
LESSONS FROM CANADA’S COTTON MILLS

M.N.A. Hinton and T. Barbiero*
October 7, 2012

*Hinton is President and Chief Economist of Minerva’s Owl Consulting Economists Ltd. and a Fellow at the Rimini Centre for Economic Analysis (RCEA). Barbiero is Professor of Economics at Ryerson University, and a Fellow at the RCEA. This is a revised version of a paper presented at the June 2012 Annual Conference of the Canadian Economics Association and the August 2012 Cities, Open Economies, and Public Policy Conference hosted by the RCEA and the University of Toronto. We thank the participants, and in particular, Ian Keay, our discussant at the CEA meetings, for their questions, comments, and suggestions. This project builds on Hinton’s doctoral research on the growth of the Canadian cotton industry. We are indebted to many scholars over the years for their advice and criticism. Notably, Bill Marr, Frank Lewis, Danny Shapiro, Paul McGouldrick, Don Moggridge, Alan McCullough, Kieran Furlong, Kris Inwood, Ian Parker, Bir Sahni, Gordon Fisher, Almos Tassonyi, and last but not least Ian Drummond, John Dales, and Alan Green. None of these scholars are responsible for what we have failed to get right. We also thank Robin Banerjee, a doctoral student at Ryerson, for his able research assistance.
IS PROTECTION GOOD OR BAD FOR GROWTH?
LESSONS FROM CANADA’S COTTON MILLS

Economic theory offers no firm answers, forcing policy makers to look to the empirical evidence for guidance. But the empirical evidence is ambiguous: the 20th-century evidence says openness is good for growth; the 19th-century evidence says it is bad, protection is best. As a result a vigorous and as yet still-unresolved debate continues. This paper contributes to the conversation by providing new evidence: a case-study of the growth of Canada’s pre-WWI cotton mills. In the late 19th century Canada was a rapidly growing, rich, high-tariff, small open economy. In this economic environment Canada’s cotton mills grew extremely rapidly. Most of their growth, historians say, was stimulated by the National Policy tariff of 1879. Thus the conventional wisdom lends support to the protection is good side of the debate. We argue, however, that historians have grossly exaggerated the importance of the tariffs because: (1) When measured carefully, the cotton mills annualized growth rate did not accelerate after 1879; instead it decelerated sharply, falling from 15 per cent to 4 per cent; (2) A large number of other causal factors were at work; (3) In counterfactual exercises based on simple general equilibrium econometric models we find increased tariffs explain only about 2 per cent of the industry’s growth 1850 to 1883. From 1884 to 1913 we find tariff increases would have actually decreased growth. The main lesson of this study is that a positive overall correlation between tariffs and growth for the economy as a whole may provide a distorted picture of the causal forces at work at the industry level. (JEL F11, F13, F14, N61, N71)

I found that however simple the plan on which a Protective policy started, it was drawn on irresistibly to become intricate, and to lend its chief aid to those industries which were already strong enough to do without it.

- Alfred Marshall. Industry and Trade

THE PROTECTION GROWTH PUZZLE

Economists have discovered (See Phelps 1966, Romer 1986, Baumol 1990, and Jones 1998) that in theory the openness of markets to competition does not always - even in very simple models - best support the economic growth of nations. Nevertheless, in practice the empirical literature suggests that in the second half of the 20th century (see Helpman 2004 and Aghion and Griffith 2005) openness and economic growth go together; while in the late 19th century (see Bairoch 1989 and more recently by O’Rourke 2000, Clemens and Williamson 2002, Reinhart 2007, and Chang 2002
and 2010) tariff protection and economic growth go hand in hand. What explains this difference between the 19th and the 20th century experience with growth and protection?

Douglas Irwin (2001; 2002) argues that the 19-century growth experience in the retreat from Free Trade is not evidence of the power of protection to stimulate growth. High tariffs he suggests were the result not the cause of growth. Taking a new political economy Heckscher-Ohlin approach, he shows economic growth under conditions of abundant land and scarce labour may well explain the adoption of high tariffs in the late-19th century economies of the United States, Canada, Australia, and Argentina.

But the possibility that tariffs caused growth before WWI cannot be so easily dismissed. Helpman (2004) has pointed out that the empirical evidence presented by O'Rourke (2000) is not a simple correlation of tariffs and growth but in fact holds a large number of other causal variables constant. And Clemens and Williamson (2002) argue that tariffs and growth go together in the late 19th century but not the second half of the 20th because in the 19th increased protection took place in a world where the average level of protection was low; while in the 20th increased protection took place in a world where most countries had relatively high levels of protection.

In this paper we take a new approach to the 19th-century tariffs and growth puzzle and present a detailed case study of the relationship between tariff protection and the growth of Canada’s pre-World War I cotton mills. Our goal is not to solve the puzzle but move the conversation forward. Canada’s late 19th-century cotton mills provide an example of an industry that grew rapidly at a time when tariffs were rising. Contrary to the conventional wisdom of Canadian historians, which claims that tariff increases were indispensible for the growth of the industry, we find that increases in tariff protection after 1850, in particular the National Policy tariff of 1879, explain only a small part of the growth in output of Canadian cotton textiles in the second half of the 19th century.
THE TARIFF AND THE GROWTH OF CANADA’S COTTON MILLS

THE INDISPENSIBILITY HYPOTHESIS

According to one measure, Canada’s cotton mills grew at a remarkable 15 percent a year between 1870 and 1890 (see Table 1, below) the output of the industry doubling every five years. Looking around the world at cotton mills in the 16 other main countries in which modern factory-based cotton mills were to be found only the Japanese mills growing at 19 percent grew faster. The Italian mills growing at 10 percent a year came third. The cotton mills of Britain and the United States, the oldest and the largest centers of modern cotton textile production, not surprisingly, trailed far behind at 2 and 5 percent.¹

Despite the Canadian cotton mills rapid growth, Canadian economic historians have had little good to say about them: partly, we suspect, because little attention has been paid to the careful measurement of their growth and as a result historians do not realize how fast the industry actually grew; partly because of their reputation, deserved or undeserved, as harsh, monopolistic, and exploitive employers of labour; and partly, and probably most importantly as far as historians are concerned, because the deep-rooted idea that the National Policy tariff of 1879, or the NP as Victorian Canadians called it was indispensable to the rapid growth of the cotton mills.²
Table 1

ANNUALIZED RATES OF GROWTH OF IMPORTS OF RAW COTTON (OR COTTON CONSUMPTION) OF WORLD’S COTTON MILLS

<table>
<thead>
<tr>
<th>Country</th>
<th>1870-1890</th>
<th>1890-1910</th>
<th>1870-1910</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>2.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>5.2</td>
<td>4.6</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>3.8</td>
<td>3.6</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>6.0</td>
<td>3.6</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.2</td>
<td>3.9</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>10.0*</td>
<td>3.5*</td>
<td>6.4*</td>
<td></td>
</tr>
<tr>
<td>Austro-Hungary</td>
<td>4.3</td>
<td>3.3</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>10.1</td>
<td>3.4</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>19.2*</td>
<td>12.8</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>4.6</td>
<td>1.6</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>3.5</td>
<td>4.0</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>-1.8</td>
<td>-0.4</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>15.0</td>
<td>4.2</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>8.2</td>
<td>3.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>4.5</td>
<td>4.3</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>5.5</td>
<td>2.9</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

*Spindle growth

For example, tariff-historian O.J. McDiarmid, echoing both the language and the spirit of the findings of the influential Report of the Royal Commission on the Textile Industry of 1938, says “[cotton textiles] received a substantial impetus from the National Policy.” Radical business historian and political economist R. T. Naylor says “[t]he process of domesticating the cotton industry climaxed with the National Policy.” And regional and social historian Peter DeLottinville, expressing what most historians it would seem in their heart of hearts believe,³ says, “[cotton textiles’ growth] was due almost entirely to the [NP] tariff restrictions.”⁴
Michael Bliss’s (1987) treatment of the cotton mills growth under the NP from the 1880s to the 1900s in his highly respected business history *Northern Enterprise* is typical of the literature’s position on the indispensability of protection. In his narrative Bliss highlights three of a tariff’s six possible effects. (1) From 1879 to 1883, rising profits induce an increase in output and investment (the production or protection effect). (2) Increased domestic production drives out imports (the trade effect). And (3) after 1883, when the increased domestic production proved too much for the domestic market to absorb, resulting, first, in overproduction and falling prices, second, price-fixing cartels, 1883-1889 and the dumping of Canadian cloth in foreign markets, and third, and finally, mergers for monopoly power in 1890, 1892, and 1905 (the monopoly effect).

Our interest in this paper is primarily with the production or protection effect. The conventional wisdom, it will be seen, rests its case for the power of the NP on a *post hoc ergo propter hoc* illusion. It is of course fallacious to argue as historians do that because growth followed the advent of the NP the 1879 tariff must have caused the industry’s growth. But it will also be shown that in the case of the cotton mills growth did not increase after the coming of the NP it actually decreased. Moreover, testing the power of the NP econometrically in a simple, small-open-economy, general equilibrium model we find that increased tariff protection explains roughly only 2 per cent of the growth of Canada’s cotton mills between 1850 and 1883 and the increases of the NP even less. By far the most important causal factor in the cotton mills growth between 1850 and 1883 was increased efficiency, the growth of total factor productivity, which was growing in these years at between 3 and 4 per cent a year. In the period 1883 to 1913 the most important causal factor, not surprisingly, was the growth of real income, this period being dominated
by the Wheat Boom. More surprisingly, the positive contribution of the tariff in this period was the result of decreases in protection.

The implications of these findings are not trivial. At minimum, economic historians need to reconsider the importance of manufacturing industries such as cotton textiles in the received explanation of Canadian economic growth and the design Canadian economic policy. Manufacturing may have caused economic growth in Canada, rather than as the old story goes economic growth in Canada caused domestic manufacturing to grow. For economists the lesson of the cotton mills is that crude high-level correlations between increased protection in economies as a whole and the growth of nations may tell us very little about how and why economies actually grew.

The remainder of the paper is divided into five sections each dealing with a specific question.

1. How big and how long-established was the industry on the eve of the NP?
2. How protective were the new NP tariffs on cottons?
3. How fast did the industry grow after the introduction of the NP?
4. How fast would the industry have grown without increases in tariff protection?
5. What lessons can we draw from the growth of Canada’s cotton mills

HOW BIG? HOW LONG-ESTABLISHED?

On March 15, 1879, the day the NP went into force, the gross value of output of factory produced cotton textiles in Canada was probably in excess of $2.5 million, making it a small, but not inconsequential, domestic manufacture. If other factory-based
enterprises were the creation of the NP, “cutlery, clocks, felts, tableware,” says P.B. Waite, for example, did not exist before the NP, the same cannot be said for cotton textiles. It was not new to Canada. In Quebec the factory production of cotton textiles had been taking place for 35 years, the first mill being built at Chambly, in 1844, closely followed by one at Sherbrooke. In Ontario cotton mills had been around for 32 years, the first mill being established at Thorold in 1847. In New Brunswick cotton textiles had been made in factories for 18 years, the first cotton mill opening at Saint John in 1862.

It is not surprising that there were cotton mills in Canada in the nineteenth century. As is well known, see for example Clark (2007), Sandberg (1974) and W. Arthur Lewis (1978, p. 7-8), cotton textiles seemed to the Victorians the most obvious, most practical and indeed the inevitable path to industrialization. By 1910 cotton mills had spread around the world from Britain to Canada and 18 other countries (Hinton 2012). What was it about cotton mills that made them such good travelers?

First, as Clark (2008) says, ““[t]here was a ready local market for textile products everywhere [in the nineteenth-century world.]” Canadians wanted cotton and cottons for everything from candle wicks to stuffing for quilts, bags to pack grain, belting and hose, and waste to wipe up spills to cloth for sturdy shirts, blouses, and trousers, and skirts, dress shirts, ballgowns, underwear, drapes and draperies. If ours is a world of synthetics, e-readers and virtual reality the nineteenth century was a world of cotton and woolen textiles, books, brick, and iron and steel. But above all it was a world that prized cotton textiles for its myriad uses in both tropical and temperate climates. Moreover, “[c]otton textiles were very cheap to transport,” say Crafts, Leybourne, and Mills (1991), “at a time
when most goods were not [referring to the first half of the nineteenth century]; as a result they were a large part of world trade.”

Second, as Robson (1957) tells us, raw cotton after ginning is practically a “pure material” that loses very little weight in subsequent processing, and whose transport costs are extremely low. As a result the cotton mills are exceedingly footloose and are as easily established close to final markets (New England cotton textiles) as they are to sources of supply of the raw cotton (Southern cotton textiles). It would have been odd if cotton mills hadn’t found their way to Canada.

Third, raw cotton, apart from the Civil War “cotton famine” years, was an easy-to-obtain global product with highly developed, sophisticated markets, both spot and forward. Canadian cotton mills, of course, were totally dependent on foreign sources of supply to obtain raw cotton. Before Confederation 95 percent of it was imported from the U.S. South; after Confederation 99 percent was imported from the South. Canadian cotton mills benefitted from its small size, the highly developed export markets in raw cotton that grew and developed in the nineteenth century, as well as, the inexpensiveness of water over land transportation as the centers of Canadian production and consumption were all easily accessible by water. As a result, (see the appendix) gold prices for raw cotton in Montreal or Saint John differed very little from those obtaining in New York or Liverpool.

Fourth, contrary to popular thinking in both modern trade theory (Krugman 1987) and the treatment of manufacturing by Canadian economic historians (Eastman-Stykolt 1967), as Sandberg (1974) and Clark (1987 and 2010) tell us “the optimal mill size was small compared even to market sizes in the smallest countries.” The nineteenth century
world, especially the world of cotton textiles, is ideally suited to the application of the tools of neoclassical trade theory rather than the “new” trade theory. It is a world of inter-industry rather than intra-industry trade, competition rather than monopolistic competition or monopoly, constant returns to scale rather than increasing returns, “the industry” as the fundamental unit of analysis on the production side of the economy rather than “the firm,” tariffs rather than a unwieldy bag of tariffs, subsidies, and quotas, and finally, a world of comparative advantage as the fundamental cause of trade rather than a combination of comparative advantage and increasing returns.

Fifth, cotton textiles fits a Hecksher-Ohlin-Samuelson world of a common technology available to be shared at a price, implicit or explicit, by all countries on highly competitive international markets, rather than a Ricardian world of different technologies. This was true even in the first half of the nineteenth century, as Jeremy tells us, before the 1840s when British law forbade the export of machinery for the textile industry and the emigration of skilled workers. The technology travelled widely and rapidly wherever there was a demand for it.11 In the second half of the century the only significant barriers to technology were the self-inflicted barriers owing to tariffs on imports of machinery, traditionally imposed by colonial and latter the Canadian governments.

Sixth, contrary to the stylized facts on Canadian manufacturing it was a largely Canadian owned domestic industry (see Acheson 1972) in which foreign direct investment played a very small, unimportant role in its establishment and development. This is not to say that American and British entrepreneurs did not play a role in its growth. They did; as they had to have done in every part of the new Canadian economy, which was with few
exceptions predominantly a nation of recent immigrants. The branch plant, however, was not a characteristic feature of the nineteenth century cotton industry.

HOW PROTECTIVE WAS THE NP?

Fowke taught us that the NP marked “the historic milestone at which Canada abandoned the idea of tariffs for revenue only, discarded even the euphemism, ‘incidental protection,’ and deliberately set foot on the pathway marked ‘Protection.’”¹² In the century it was to last,¹³ almost every aspect of Macdonald’s “judicious readjustment” of the tariff has been studied and debated,¹⁴ and continues to be debated.¹⁵ Nevertheless a unanimous consensus has long existed on the fundamental purposes and methods of the NP tariff which went into effect on March 15, 1879. The fundamental purpose was protection. The method or approach taken to implementing protection, as explained by McDonald, before the election, in Parliament and on the picnic grounds of Ontario, and Tilley, his finance minister, in the House of Commons in his budget speeches had four main features or principles:

1. Select for high protective duties manufactured goods domestic firms could produce but did not now produce, or did not now produce in large quantities. And select for high revenue duties goods like wine, coffee, corn, rice, and tea that could not then be commercially produced in Canada.

2. Select for low duties that the raw materials imported to produce manufactured goods, and also product lines it was thought too expensive or complex for domestic firms to produce.
3. Substitute compound specific and *ad valorem* duties for *ad valorem* rates to insure price deflation did not reduce either the protective or revenue creating power of the tariff.

4. Promise to maintain protection for long periods of time to reduce uncertainty and assure investors that their investments would not go sour because a tariff was suddenly and unexpectedly reduced.

The method of the NP was more easily explained than executed. (Apart from goods such as silk, bananas, coffee, and tea, it was impossible to grow in Canada, how could one tell which goods to tax for revenue and which for protection? Clearly it was not easy to decide. American experts on tariff making were hired to advise the minister, but the problems were endless. Who were the long-term winners and who were the losers? What about competing goods that were substitutes in consumption? What about jointly demanded goods in production such as machinery and coal? What about agriculture? Protecting agricultural implement makers clearly hurt farmers. Protection to wheat farmers was clearly redundant. The story is so many manufacturers, merchants, and farmers wrote Tilley to ask for tariff protection, or ask that protection not be applied, the tee-totaling former druggist from New Brunswick went blind with exhaustion and was forced to retire, on doctors orders, to darkened rooms to recuperate. Not all the costs of rent seeking were pecuniary. But what the tariff makers were trying to achieve is easily grasped. Looking particularly at the duties that affected cotton textiles let us see what the tariff makers did and how different the NP tariff was from the tariffs that went before it.

The cotton industry the government said was to be particularly favoured (Principle 1) and historians have believed them. “Among the industries favoured by the National policy,
said O.D. Skelton, “the cotton industry took first place.” That the government would select cotton textiles for protection is unsurprising. As we have suggested above cotton textiles in the nineteenth century was like plastics in the twentieth century, and computers in the twenty-first century. Naturally raw cotton (in accordance with Principle 2) was admitted free of duty. But raw cotton was admitted free under the revenue tariffs of the 1870s. Indeed in central Canada raw cotton had not been taxed since 1848 and in New Brunswick since 1855. What was special about the NP in its treatment of imports of goods used by the cotton mills were the duties on textile machinery. For 5 days short of 19 months (March 15, 1879 to October 10, 1880) imports of textile machinery were admitted free of duty, a substantial saving. Under the old revenue tariffs the duty on machinery was 17.5 percent and under the NP after October 10 it was increased to 25 percent.

The tariffs on the goods the cotton mills specialized in were increased (in accordance with Principle 1). Before the NP imports of these largely low count yarns and plain weave low count cloths, typically 20 count or less, greys, bleached, dyed, or colored goods all paid 17.5 percent, 1874-1879, and 15 percent 1867-1874. After the NP greys and bleached goods paid (in accordance with Principle 3) 15 percent plus 1 cent per square yard, and dyed or coloured goods paid 15 percent plus 2 cents a square yard. Prints, which were not then produced by the cotton mills (in accordance with Principle 1), were charged the not elsewhere specified rate of 20 percent.

The question is how protective were these duties and how much more protective were they than the revenue tariffs of the 1870s or the incidentally protective tariffs of the 1850s and 1860s?
One way to measure the effective protectiveness of the tariff is to calculate what we will call its “Barber mark-up”: the maximum potential mark-up on the costs of converting raw cotton – purchased at world prices – into yarn and cloth. (According to the census of 1870 the tariff-distorted share of raw cotton costs in the gross value of production of cottons was 59 percent.)

Typically historians have seen the pre-NP tariffs as being low. Firestone (1960, p. 218), for example, says, tariffs “afforded only slight protection to industry” in the 1850s, 1860s, and 1870s. The Barber Mark-up tells a very different story. In the early 1850s the 12.5 percent tariff of the day in central Canada delivered a mark up of 25 per cent. The incidentally protective 20 percent Cayley-Galt tariffs of 1858-59 delivered a mark-up of 68 percent. The 15 percent compromise revenue tariffs of the late 1860s and early 1870s brought the mark-up down to 47 percent. Finally, the 17.5 percent additional protection given by the Liberals last revenue tariff increased the mark up to 57 percent.

With rates of protection like these one well might expect Canadian cotton textiles to have taken off in a rapid growth spurt as early as the 1850s. And as we will see in the next section that is exactly what happened. And yet we have not yet provided a measure of the protectiveness of the NP. This is a more difficult task because the NP tariff was more complicated schedule but it is easy enough to get a clear idea of the possible range of protectiveness by measuring the Barber mark-up delivered by ad valorem equivalent tariffs of between 20, 25, 30, and 35 percent, which covers the full range of imported cottons goods competing with the goods produced by Canadian mills and, then, compare these markups to those delivered by the older so-called revenue or incidentally protective tariffs. The maximum potential Barber markup, assuming more conservatively the cost
share of raw cotton to domestic firms was 0.50, comes 40 percent for goods paying 20 percent, 50 percent for goods paying 25 percent, 60 percent for goods paying 30 percent, and a whopping 70 percent for goods, like prints in 1884, paying 35 percent. With maximum potential rates of protection like these it is no wonder there was a rush to invest in cotton mills in the early 1880s. But it is also possible, or so we will argue, that the tariffs of even the late 1850s were so high as to be to a large extent redundant and by the 1870s almost entirely or completely so. That is, it is possible that the rate of protection remained unchanged despite the decreases in the tariff at Confederation and then the increases that climaxed with the NP. But before we go any further into causes let us examine the actual growth of the cotton mills more closely, for that is what we wish to explain.

HOW FAST DID THE INDUSTRY GROW?

If the NP was indispensable to the growth of domestic cotton textiles, as the historians suggest, one would expect to find a major growth spurt in or around 1879. And yet looking at Figure 1 showing the real input index of the cotton mills output and Figure 2 which plots an index of the money value of output 1850 to 1913 deflated by a Canadian cotton goods price index which we call a real value index that is not what we find. Indeed if there is any break point in these measures of long term annualized growth it is not on or about 1879, but on or about 1883, four years later, when the so-called overproduction crisis struck, and the curve of growth tilts down.

Let us attempt a more rigorous, measure of the industry's growth before and after the NP. To examine and compare the trend long term annualized growth rate of the cotton
mills before and after the NP we regressed the logarithm of our two output measures on a
time trend variable for 3 time periods: 1850 to 1883, 1883 to 1913, and 1850 to 1913:

\[\text{Ln Output} = \text{intercept} + \beta^*t + \text{error} \]

Our interest is in the β^* coefficients which are the estimated annualized trend rates
of growth of the cotton mills over these time periods. The estimates (see Table 2) confirm
the visual impression expressed in Figures 1 and 2; the industry grew rapidly at a rate of
between 17.2 and 18.2 per cent a year in the period 1850-1883 and then decelerated
sharply 4 years or so after the establishment of the NP to between 4.0 per cent and 4.4
percent a year in the period 1883-1913.21

Figure 1

GROWTH OF REAL INPUT INDEX OF COTTON MILLS OUTPUT, 1850-1913
Figure 2

GROWTH OF REAL VALUE INDEX OF COTTON MILLS OUTPUT, 1850-1913
Table 2
TREND GROWTH RATES IN REAL INPUT AND REAL OUTPUT OF THE COTTON MILLS,
1850-1883, 1883-1913, AND 1850-1913

<table>
<thead>
<tr>
<th>Years</th>
<th>Intercept Real Input</th>
<th>B Real Input</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850-1883</td>
<td>-1.859679 (t = -10.44)</td>
<td>0.171800 (t = 19.34)</td>
<td>0.9212</td>
</tr>
<tr>
<td>1883-1913</td>
<td>4.261062 (t = 108.75)</td>
<td>0.039939 (t = 18.68)</td>
<td>0.9233</td>
</tr>
<tr>
<td>1850-1913</td>
<td>-0.917111 (t = -5.049)</td>
<td>0.117970 (t = 24.281)</td>
<td>0.9048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years</th>
<th>Intercept Real Output</th>
<th>B Real Output</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850-1883</td>
<td>-2.34736 (t = -14.43)</td>
<td>0.18227 (t = 22.47)</td>
<td>0.9404</td>
</tr>
<tr>
<td>1883-1913</td>
<td>4.244420 (t = 89.22)</td>
<td>0.043813 (t = 16.88)</td>
<td>0.9076</td>
</tr>
<tr>
<td>1850-1913</td>
<td>-1.386713 (t = -7.476)</td>
<td>0.128155 (t = 25.830)</td>
<td>0.915</td>
</tr>
</tbody>
</table>

HOW FAST WOULD GROWTH HAVE BEEN WITHOUT THE NP?

How fast would the cotton mills have grown if tariffs had not increased beyond what they were in 1850 and the NP never been introduced? Other causal factors in addition to the tariff (see Table 3, below) were at work, over a dozen operating directly at the level of the industry alone. Among them: changing world prices for cotton yarns and cloth and raw cotton, entrepreneurship, the development of markets for labour, machinery and raw cotton, and yarn and cloth, and the invention and improvement of new machinery, such as ring spinning and the automatic loom. Our goal, here, is not to provide a detailed accounting of all possible sources of growth, but rather to construct a simple
Table 3
CHECKLIST OF CAUSAL FACTORS EXPLAINING GROWTH, 1867-1914

<table>
<thead>
<tr>
<th>Economy-wide</th>
<th>Manufacturing-sector</th>
<th>The Cotton Mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noted by Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confederation creates BNA customs union</td>
<td>Tariff 67 set at 15%</td>
<td>World price cottons falls</td>
</tr>
<tr>
<td></td>
<td>Patent Act 71 attracts direct foreign investment</td>
<td>Price raw cotton falls</td>
</tr>
<tr>
<td>'Great Depression'</td>
<td>'Merchants versus Industry'</td>
<td>Managers technically weak</td>
</tr>
<tr>
<td>Long down-swing 73-96</td>
<td>Decline in old staples;</td>
<td>financially naïve, poor marketers,</td>
</tr>
<tr>
<td>Steady out-migration to US</td>
<td>Entrepreneurship, Savings abundant in</td>
<td>ignorant of trade</td>
</tr>
<tr>
<td></td>
<td>Maritimes</td>
<td>Machines obsolete</td>
</tr>
<tr>
<td></td>
<td>Labour abundant in Quebec</td>
<td>Local supplies of skilled labour and</td>
</tr>
<tr>
<td></td>
<td>Municipal bonusing and tax holidays</td>
<td>managers non-existent</td>
</tr>
<tr>
<td></td>
<td>common everywhere</td>
<td></td>
</tr>
<tr>
<td>Cyclical slump 73-78</td>
<td>Sacrifice markets</td>
<td>Dumping of U.S. cloth</td>
</tr>
<tr>
<td></td>
<td>Tariff reset at 17½% in 74</td>
<td></td>
</tr>
<tr>
<td>IC RR completed 74, westbound fares low</td>
<td>Lachine Canal widened 1878</td>
<td></td>
</tr>
<tr>
<td>Cyclical Boom 1879-83</td>
<td>NP raises duties to 20% for most manufactures</td>
<td>Tariffs 25%, 30% plus on cloth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machinery duty 25% waived</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cotton orgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rise in world prices cottons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fall in US Raw Cotton prices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overproduction crisis 83</td>
</tr>
<tr>
<td>Recession 83-89</td>
<td>Knights of Labour 9 hour day</td>
<td>Price-fixing 84-89</td>
</tr>
<tr>
<td></td>
<td>Price fixing schemes</td>
<td>Mergers 90 and 92</td>
</tr>
<tr>
<td></td>
<td>RC Capital and Labour Combines Act 89</td>
<td></td>
</tr>
<tr>
<td>Recovery 89-92</td>
<td>CPR Completed 85</td>
<td>Tariff on Prints 35% 84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exports to China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mergers 05 and 10</td>
</tr>
<tr>
<td>Neglected by Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic product and factor markets continue to develop throughout period</td>
<td>Technical and pecuniary economies</td>
<td>Raw Cotton, machinery and cloth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>export markets continue to develop in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UK and US</td>
</tr>
<tr>
<td>Trade expands under Classical gold standard</td>
<td>Rent seeking</td>
<td>Learning by doing and by observing</td>
</tr>
<tr>
<td>Wheat Boom</td>
<td>Second Industrial Revolution</td>
<td>Automatic Loom 95</td>
</tr>
</tbody>
</table>

counterfactual test of the importance of increases in tariff protection in the growth of the industry relative to all other causal factors.

Imagine, to put some flesh on the bare bones of this counterfactual, that in his budget speech of March 1879 Sir Leonard Tilley - in lock step with every other previous Canadian minister of finance, Grit and Tory, before and after Confederation, in their budget speeches - had announced that the proposed NP tariff changes would be introduced with one change: the tariff on cotton goods would be left unchanged at its 1850 rate of 12.5 per cent \textit{ad valorem}. Note, a 12.5 percent tariff would still have granted domestic cotton mills a Barber mark up of between 25.0 and 30.5 percent on the costs of converting raw cotton into yarn and cloth. Surely one might think this was adequate, indeed even overly adequate protection to an industry now over 20 years established. As counterfactuals go this one gives the NP a good chance of showing well relative to the imagined alternative and in contrast to most of the classic counterfactuals an easy one that is not very difficult to imagine happening. Easier to imagine, at least than some of the classic counterfactuals of economic history: such as, the asphalting of the prairies to prevent the Wheat Boom, an eighteenth century repeal of the British Navigation Acts, Europe’s failure to discover the new world in the age of sail, or the overnight swapping of the American railroads for more canals and roads in either the 1850s or 1890s.

We pose two counterfactual questions: (1) How much of the industry’s growth between 1850 and 1883 would have taken place if the tariff had been frozen at its 1850 level of 12.5 per cent; and (2) How fast would the industry have grown between 1884 and 1913 if the NP tariff had been gradually reduced, year by year from its 1884 level of 29.5 per cent to its former 1850 level of 12.5 per cent?
To answer these questions we divide the second half of the 19th century into two distinct periods, 1850-1883 and 1884-1913, and model each period separately.

In both periods, we assume, there are two countries Canada, a price-taking, small-open economy, with two domestic industries, Cotton goods and Agricultural goods, and the United States, a large country, which sets prices, the terms of trade, for both industry’s goods. Both of Canada’s two industries have well-behaved constant returns to scale production functions and firms in both industries maximize profits. The US stands ready to supply or demand both industry’s goods in whatever amounts Canada wants at fixed prices. Domestic Canadian prices are distorted by a tariff on cottons but Canada has no tariff on Agricultural goods, for which it is assumed it has a comparative advantage and the US has no tariffs on imports from Canada.

In the first period, 1850-1883, it is assumed that at the equilibrium point, where the tariff distorted terms of trade is tangent to Canada’s transformation curve between Agricultural and Cotton goods, the Canadian cotton good industry does not supply the whole domestic demand which is made up by imports from the United States.

Specifically, the Canadian Cotton goods supply curve is written as:

\[Q_s = S \cdot P_s^e \]

The law of one price holds, so the Canadian price of cotton goods \(P \) is fixed at world price \(P_w \) plus the tariff:

\[P_s = P_w (1 + T) \]
The Cotton Goods production function is taken to be Cobb Douglas:

\[(3) \quad Q = A_0 \cdot e^{gt} \cdot L^a \cdot C^b \cdot K^c\]

There are three factors of production, Labour, L, Raw Cotton, C, and Machinery, K. Total factor productivity is initially at level A_0 and grows at a constant rate of g a year t and by definition the superscripts a, b, and c sum to 1.

The markets for L, C, and K are assumed to be competitive and therefore all are paid their marginal products. The wage, w, therefore, must equal Q/L and the price of cotton, P_c, must equal bQ/C. To get a rising supply curve we will treat K as fixed, which follows the approach taken by Fogel and Engerman (1969) in their classic iron industry model and Dick (1982) in his modeling of the Canadian newsprint industry.\(^{22}\) Rearranging and substituting these expressions in (3) for L and C and with some further manipulation and taking logs throughout, we obtain the expression:

\[(4) \quad \log Q = \text{Constant} - a/c \log w - b/c \log P_c + g/c \, t\]

Taking logs throughout in (1) and substituting the right hand side of (4) for S we obtain

\[(5) \quad \log Q = \text{Constant} + \varepsilon \log P - a/c \log w - b/c \log P_c + g/c \, t\]

which is the equation we will estimate econometrically.

In the second period, 1884-1913, it is assumed that the equilibrium point, where the tariff distorted terms of trade is tangent to Canada's transformation curve between Agricultural and Cotton goods, the Canadian cotton good industry supplies exactly all of the Canadian demand for cotton goods. This is an Eastman-Stykolt type model. The
Canadian cotton industry is assumed to be a monopoly whose marginal cost curve always cuts the demand curve to the right of the import point and to the left of the export point. As a result we can model the growth of the industry by specifying the Canadian demand curve for cotton goods:

\[(6) \quad Q_d = D \cdot Y^\sigma \cdot P^\eta \]

Taking logs we obtain our estimating equation:

\[(7) \quad \log Q_d = \text{Constant} + \sigma Y + \eta P \]

We used OLS regression models to explain the growth of the Canadian cotton mills’ production 1850-1884 and the demand for Canadian cotton goods 1884-1913. 23 Two measures of the output of the mills are employed, as described earlier, real input and real output. Our estimating equations, we should point out are not reduced forms but rather structural equations. The two estimating equations for the industry’s supply curve for the period 1850-1883 are:

\[\log \text{Real Input} = \text{Intercept} + B_1 \log \text{Real Wage} + B_2 \log \text{Real Price Cotton} + B_3 \log \text{Real Price Output} + B_4 \text{Time Trend} + B_6 \text{War Dummy} + \text{error} \]

\[\log \text{Real Output} = \text{Intercept} + B_1 \log \text{Real Wage} + B_2 \log \text{Real Price Cotton} + B_3 \log \text{Real Price Output} + B_4 \text{Time Trend} + B_6 \text{War Dummy} + \text{error} \]

War Dummy a dummy variable designed to capture the negative disturbances of the Civil War and the Cotton Famine years 1861-1865.

In the estimation of the industry’s supply curve, we are particularly interested in the own price elasticity of supply, B3, the elasticity of output with respect to the wage, B1, the
elasticity of output with respect to the price of cotton, B2, and total factor productivity change, B4.

In the estimation of the demand curve, in the period 1884-1913, the parameters we wish to estimate are the own price elasticity of demand, B6, the income elasticity of demand, B7, and, B8, a dummy variable, Crash Dummy, to account for the negative shock of the recession of the 1884-1889 which affected the cotton industries of the Canada, the United States, and Britain.

Our supply side OLS parameter estimates (and robust standard errors) are shown in Table 5. Our standard errors are probably too high because of collinearity and we probably have a missing variable and an errors in variable problem. The missing variables are the cost of fuel, the cost of transporting inputs to the mills, and the cost of transporting cloth and yarn from the mills to the domestic market. All of these variables should be negatively correlated with the dependent variable. Note the intercept terms in both the real input and real value regressions are negative, as they are probably picking up the effects of the negatively correlated missing variables which are showing their influence via the error term. As a result the real wage elasticity, which should be negative, is the “wrong” sign and the real price of cotton may also be too low in absolute value.
Table 5

OLS REGRESSION ESTIMATES (ROBUST STANDARD ERRORS) OF THE DOMESTIC SUPPLY CURVE FOR CANADIAN COTTON TEXTILES, 1850-1883

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Dependent Variable</th>
<th>Real Input</th>
<th>Real Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-3.25077</td>
<td>-3.91855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.39919)</td>
<td>(4.15208)</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>1.23789</td>
<td>1.18073</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.90835)</td>
<td>(0.85127)</td>
</tr>
<tr>
<td>Real Wage</td>
<td></td>
<td>-0.86500</td>
<td>-0.75679</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.55331)</td>
<td>(0.47401)</td>
</tr>
<tr>
<td>Real Price Cotton</td>
<td></td>
<td>1.82642*</td>
<td>1.65235*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.08893)</td>
<td>(0.98482)</td>
</tr>
<tr>
<td>Real Price Output</td>
<td></td>
<td>0.15741 ****</td>
<td>0.16761 ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01896)</td>
<td>(0.01685)</td>
</tr>
<tr>
<td>Time Trend</td>
<td></td>
<td>-0.11830</td>
<td>-0.08985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.35484)</td>
<td>(0.32564)</td>
</tr>
</tbody>
</table>

Note:

(1) Robust standard errors are in brackets (“HC3”). Significance levels: * = >90%, ** = >95%, ***=>99%, ****=>99.9%.
(2) Regression on real input: Residual standard error: 0.4798 on 28 degrees of freedom
Multiple R-squared: 0.9385, Adjusted R-squared: 0.9275
F-statistic: 118.4 on 5 and 28 DF, p-value: < 2.2e-16
(3) Regression on real output: Residual standard error: 0.4379 on 28 degrees of freedom
Multiple R-squared: 0.9536, Adjusted R-squared: 0.9453
F-statistic: 165.8 on 5 and 28 DF, p-value: < 2.2e-16
Figure 3

LOG OF REAL INPUT AND REAL VALUE, 1850-1883

Log(Real Input) versus time

Log(Real Value) versus time
Our estimating equations for the period 1884-1913 are:

\[
\text{Log Real Input} = B_0 + B_1 \text{Log Real Price} + B_2 \text{Log Real GDP} + B_3 \text{Crash dummy} + \text{error}
\]

\[
\text{Log Real Output} = B_0 + B_1 \text{Log Real Price} + B_2 \text{Log Real GDP} + B_3 \text{Crash dummy} + \text{error}
\]

The OLS elasticity estimates of these demand equations are shown in Table 6, below. Here we are probably in pretty good shape econometrically despite there being only 3 independent variables as this is a robust specification of the demand and the pattern of the residuals suggests little evidence of serial correlation. The own price elasticity of demand for domestic cotton goods is estimated to between -1.4 and -1.5 and the income elasticity of demand to be 0.8. These are statistically significant estimates and we believe the first empirical estimates of own-price and real-income elasticities of demand found for a 19th-century Canadian manufactured good.
Table 6

OLS REGRESSION ESTIMATES (ROBUST STANDARD ERRORS) OF THE DOMESTIC DEMAND CURVE FOR CANADIAN COTTON TEXTILES, 1884-1913

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Real Input</th>
<th>Dependent Variable</th>
<th>Real Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.08499 ***</td>
<td>0.89849 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.33934)</td>
<td>(0.37953)</td>
<td></td>
</tr>
<tr>
<td>Real Output</td>
<td>-1.38635 **</td>
<td>-1.46247 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.51739)</td>
<td>(0.62965)</td>
<td></td>
</tr>
<tr>
<td>Real Income</td>
<td>0.80031 ****</td>
<td>0.85075 ****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.07017)</td>
<td>(0.07943)</td>
<td></td>
</tr>
<tr>
<td>Crash Dummy</td>
<td>-0.25965 ****</td>
<td>-0.30867 ****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.06977)</td>
<td>(0.07996)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) Robust standard errors in brackets ("HC3").

(2) Significance levels: * = >90%, ** = >95%, *** =>99%, **** =>99.9%.

(3) For regression on the Real Input dependent variable: Residual standard error: 0.09834 on 26 degrees of freedom; Multiple R-squared: 0.9338, Adjusted R-squared: 0.9261; F-statistic: 107.3 on 3 and 26 DF, p-value: 9.201e-15.

(4) For regression on the Real Value dependent variable: Residual standard error: 0.1149 on 26 degrees of freedom; Multiple R-squared: 0.9248; Adjusted R-squared: 0.9161; F-statistic: 107.3 on 3 and 26 DF, p-value: 9.167e-15.
Figure 4
LOG OF REAL INPUT AND REAL OUTPUT, 1884-1913

Log(Real Input) versus time

Log(Real Value) versus time
On the supply side while collinearity might be inflating our standard errors it is doubtful that missing variables are biasing upwards our estimates of the own price elasticity of supply, which is statistically significant and we estimate to be between 1.7 and 1.8 and the coefficient on our time trend variable provided it is interpreted properly (to be not only the growth of total factor productivity but also the benefits of increasing economies external to the cotton mills TFP measure) which we estimate to be growing at between 3.7 and 4.0 percent. Our estimate of the own price elasticity of supply of domestic cottons, which admittedly is only significant at the 90 percent level is also the only example we know of in the literature of such an elasticity.

Now we are ready to answer our counterfactual question. What would the growth of the cotton mills have been if the tariff had stayed unchanged at its 1850 level and the NP cottons tariff had never been introduced. Let us focus on the real output measure of growth (the real input does not give a significantly different answer) and look first at the period 1850-1883.

The actual growth of the cotton mills in this period (see Table 7) was 18.2 per cent a year. The regressions tell us that of this total TFP growth explains 15.8 per cent, all other factors 0.8 per cent, and the tariff 0.5 per cent. The residual contribution of all other factors was 1.8 per cent a year.
Table 7
ACCOUNTING FOR COTTON TEXTILES’ GROWTH, 1850-1883 AND 1884-1913

<table>
<thead>
<tr>
<th>Growth Rates, Elasticities and Rates of Change</th>
<th>1850 – 1883</th>
<th>1884 – 1913</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real input</td>
<td>Real Output</td>
</tr>
<tr>
<td>1. Growth of output [%]</td>
<td>17.2</td>
<td>18.2</td>
</tr>
<tr>
<td>2. Price elasticity of supply</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>3. Price elasticity of demand</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4. Income elasticity of demand</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5. Growth of income [%]</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>6. Price of cotton goods [%]</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>7. Tariff [%]</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>8. Contribution to growth:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Tariff [%]</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>b. Productivity [%]</td>
<td>15.7</td>
<td>16.8</td>
</tr>
<tr>
<td>c. Income [%]</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>d. All other [%]</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Sources: See text

Note, the contribution of the tariff is based on the estimates in Table 4. The annualized increase in output of the cotton mills stimulated by increased tariffs between 1850 and 1883 was at most:

\[T \cdot \frac{T}{1 + T} \cdot \varepsilon \]

where \(T \) is the annualized rate of change of the tariff between 1850, \(T \), and 1883, \(T' \). The tariff in 1850 is 12.5 per cent and the tariff in 1883 is 28.3 per cent, and \(\varepsilon \), recall, is the own price elasticity of supply which we have estimated at 1.7. Substituting, we estimate the NP at most contributed:

\[0.28 \text{ per cent} \times 1.7 = 0.5 \text{ per cent} \]
to the industry's total actual growth rate of 18.2 per cent. Therefore, as a percentage of the cotton mills actual growth rate, tariff increases, including the NP increases, at most, contributed 2.8 per cent of the total (0.5 percentage points divided by 18.2 percentage points). By contrast TFP growth contributed 92.3 per cent to the growth of the cotton mills. Granted our measure of the impact of the NP does not include the effect of the 16 month elimination of the tariff on machinery, but even so it seems doubtful that the NP played any more than a minor role in the growth of the Canadian cotton mills in the time of the heyday of cotton textiles growth.

In the years 1884-1913 which we will not go into in detail here, the tariff did make a positive contribution to the industries growth because the tariff was reduced from 29.5 per cent to 25 percent which increased domestic demand. This is not what historians have in mind by the role of protection in the growth of industries, but perhaps that is why the actual economic history of an industry is often different from the way historians imagine it.

WHAT ARE THE LESSONS?

In the second half of the nineteenth century, cotton textiles grew extremely rapidly in Canada, growing at 17-18 per cent a year from 1850 to 1883 and then at a more moderate rate of 4.0-4.4 per cent a year 1884 to 1914. Canadian historians have long believed the cotton industry's growth depended largely on the NP. We find, however, that the tariff was a relatively unimportant causal factor in the growth of the industry. Because:

1. The Canadian cotton industry's growth was significantly faster before the NP than after. And the pre-NP “revenue” tariffs offered a much higher level of protection than is typically realized.
2. Other causal factors, particularly supply-side causal factors were far more numerous than the literature would have one believe and probably far more important.

3. Counterfactually, and conservatively, if the NP had not been introduced, and the tariff not increased after 1850 most of the industry's growth, over 95 per cent of the cotton mills growth would still have taken place.

The fundamental lesson of Canada's cotton mills is that a strong positive correlation between tariffs and growth at the level of the economy as a whole may provide a distorted picture of the causal forces at work at the industry level. In Canada tariffs may have been important for the establishment of the cotton industry in the 1840s and 1850s, but the NP tariff increases of 1879 had little to do with the industry's rapid growth. It seems, we believe, not unreasonable to ask those who claim that protection was a stimulus to economic growth of nations provide more detailed microeconomic industry-level evidence to support their simple macroeconomic aggregate correlations.
APPENDIX I

A BRIEF NOTE ON STATISTICAL SOURCES

A more detailed note on statistical sources is available upon request.

\(Y \) is a real GNP index (1890=100) obtained by linking Maddison’s annual estimates (1850-1870), which in turn are based on Firestone's estimates, and Urquhart’s estimates (1870-1913).

\(Pa \) is a Canadian wholesale price index, 1890=100, which links Paterson and Shearer’s estimates 1850-1870 with the price index used by Urquhart to deflate his current dollar GDP estimates (1870-1913).

\(W \) is a gold dollar wage index, (1890=100) based on Layer’s data on the wages of loom fixers in the US.

\(Pc \) is a gold dollar Bureau of Labor Statistics, price of raw cotton in New York index (1890=100) taken from the Historical Statistics of the United States.

\(P \) is a Canadian price of cotton goods which links a tariff-adjusted gold money price of US brown sheeting (1850-1861), a William Parks and Son, Saint John, NB, factory price index for cotton yarn and cloth (1861-1892), and a Coats DBS price index for cotton yarn and cloth (1892-1913).

\(Pw \) is a gold price BLS of US Brown Sheeting price index, taken from Historical Statistics of the United States.

\(Tus \) is the Canadian tariff on cotton goods from US, (per cent) from Canada’s Tables of Trade and Navigation.

\(Tuk \) is the Canadian tariff on cotton goods from UK, (per cent) Canada, Tables of Trade and Navigation.
REFERENCES

END NOTES

1 Studying the growth of industries in 5 major industrial countries, Kuznets 1930, p.324-325)found that “the simple logistic and the simple Gompertz curves ..., chiefly the logistic, yielded suitable descriptions of the long-time movements in production,” and over periods of 30 to 40 years “the tendency of industries to exhibit a declining rate of growth.” According to Rostow 1975, p. 160, the British cotton mills in the Industrial Revolution, grew “explosively” at 9.2 percent a year between 1775 and 1800, less than half of the rate achieved by the Canadian and Japanese industries a century later, “This,” he says, “is what a case of increasing returns ... looks like in real life.” This is less than the rate the Italian mills were growing at in the 1870s and 1880s.

2 See McCulough 1991 for a survey of the literature.

3 Glen Williams 1979, for example, writes: “While it would be difficult to isolate the tariff as the only, or even the principle, cause of early Canadian industrial growth, it clearly played a central role.”

Kindleberger 1974 recall lists 10 effects. But only 6 apply to the growth of an industry. The other four are macroeconomic and are quite rightly ignored by Bliss: the terms of trade effect, internal income distribution effect, balance of payments effect, and employment effect. The two he does not talk about but might are the consumption and revenue effects which we will deal briefly with later in the paper. There are of course also the innumerable non-economic effects of a tariff. For example Stigler (1947) organizes these effects under three major headings: political and diplomatic relations, administrative enforcement and military self-sufficiency, to which we could add a fourth heading, morals public and private. In this paper we will have nothing to say about the noneconomic effects of the NP. But it should be noted that the debate over protection in nineteenth century Canada centered largely on the non-economic effects of protection.

There is now a fairly large and growing body of work on productivity change that supports this idea. For an overview see Inwood and Keay 2005, Baldwin and Green 2008, and Hinton 2010.

Estimated as the average of Urquhart's (1993, p. 389) estimates for “cotton textiles” gross value of product 1878 ($2.1 million) and 1879 ($2.9 million). Other manufacturing industries of roughly the same size ($2 to $3 million) included distilleries, paper, and railway equipment.

For example McInnis 2000 labels the industry a “laggard” and describes its growth as “meagre”

There marked the geographic limits of Canadian cotton textiles in the nineteenth century industry.

See Jeremy

Hart 2002.

See the Fall, 1979 issue of the Journal of Canadian Studies, marking the 100th anniversary of the introduction of the NP.

See Beaulieu and Cherniwcchan 2011, who argue that the NP restricted trade significantly more than historians have typically believed at a much lower static welfare cost than economists and economic historians have typically believed was the case.

Skelton 1913, p.187.

McDiarmid 1946, pp. 136-142, 161-165, 174-177, 200, and 252 and Canada Tables of Trade and Navigation, 1868-1897

See, Barber 1952, Dales 1964, and Mackintosh 1937. We are indebted to a paper by Harley (2001) for reminding us of this simple and elegant approach to measuring protectiveness. The mark up, it is easy to show, is equal to the ad valorem or ad valorem equivalent tariff, \(t \), divided by \(1 - Sc (1 + t) \), where \(Sc \) is the Canadian industry’s cost share of raw cotton.

The real input index is based on estimates of annual imports of raw cotton into Canada 1850-1913. See Appendix I: A Note on Statistical Sources, which will make available at the meetings in June to thse who are interested.

A Chow test was employed to test for structural breaks, or more properly the absence of a structural break, in the year 1879 and the presence of one in 1883. The p-values for a structural break in the time-trend coefficient were 0 for both dates, indicating that the null hypothesis of no structural break can be rejected. That is we can say with a very high degree of confidence the coefficient on the time trend is different before and after the interval 1879-1883 but we cannot say precisely where in this interval the break occurs.

This is not as restrictive as it might first appear as cotton textile machinery in the late 19th century, as McGouldrick (1968) and Sandberg (1974) tell us, was typically depreciated over periods as long as 20 to 50 years. McGouldrick’s best guess being 32 years and Sandberg’s 20 years.

A detailed description of the sources of our data is provided in Appendix II.